DOI QR코드

DOI QR Code

Cleaning of the Waste Reverse Osmosis Membrane Filters for the Household Water Purifier and Their Performance Enhancement Study

정수기용 역삼투 폐분리막 필터의 세정 및 성능 향상 연구

  • Cho, Young Ju (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 조영주 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2017.06.20
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

In this study, the regeneration investigation for waste reverse osmosis membrane filters which were discarded after use for the household water purifiers has been carried out. Sodium hydroxide, sodium bisulfate, and ethylenediamine tetra acetic acid(EDTA). as the chemical cleaning agents were used. And they were in-situ cleaned with the micro-bubble generator as well. The best result was obtained when both 0.1% EDTA and micro-bubbles were used for 30 min cleaning. Thus, when the performance of the brand new RO membrane and restorated RO membrane were compared, the flux, 19.9%, the recovery ratio 45% were enhanced while the salt rejection was reduced for NaCl 100 mg/L solution, in other words, it has been recovered to the original brand new RO membrane filter. Also the removal of pollutants on membrane surface was confirmed in a naked eye through the scanning electron microscopy. Finally, this research has provided the possibility of the re-use of the waste RO membrane filters of household water purifier which were reclaimed or incinerated after use.

본 연구에서는 사용 후 폐기되는 정수기용 역삼투(Reverse Osmosis; RO)막 필터를 세정하여 새 필터의 수준으로 복원시키는 연구를 수행하였다. 화학적 세정액으로는 수산화나트륨, 중아황산나트륨, EDTA용액을 사용하였으며 마이크로버블 발생 장치와 함께 in-situ의 방법으로 세정하였다. EDTA를 0.1%의 농도로 제조한 뒤 마이크로버블과 함께 사용하여 30분 세정하였을 때 가장 좋은 결과를 나타내었다. 이때 폐 필터와 세정 후 폐필터의 성능을 비교해 보았을 때 투과도는 19.9%, 회수율은 49.5%증가하였으며 NaCl 100 mg/L 용액에 대한 염제거율은 2.3% 감소되었는데, 이는 새 필터와 동등한 수준으로 회복이 되었다. 또한 전자현미경 분석을 이용하여 막 표면의 오염물의 제거를 육안으로 확인하였다. 이로써 전량 매립 또는 소각 되어지는 정수기용 폐 RO막 필터의 세정을 통하여 재사용이 가능할 것으로 판단된다.

Keywords

References

  1. H. Streathmann, "Membrane separation processes: Current relevance and future opportunites", AIChE J., 47, 1077 (2001). https://doi.org/10.1002/aic.690470514
  2. T. H. Kim, "Current R&D trend of nanofiber membranes", Membr. J., 22, 395 (2012).
  3. W. D. Mores and R. H. Davis, "Direct observation of membrane cleaning via rapid backpulsing", Desalination, 146, 135 (2002). https://doi.org/10.1016/S0011-9164(02)00506-4
  4. I. H. Cho and J. T. Kim, "Trends in the technology and market of membrane bioreactors (MBR) for wastewater treatment and reuse and development directions", Membr. J., 23, 24 (2013).
  5. W. Gao, H. liang, J. Ma, M. Han, Z.-L. Chen, Z.-S. Han, and G.-B. Li, "Membrane fouling control in ultrafiltration technology for drinking water production: A review", Desalination, 272, 1 (2011). https://doi.org/10.1016/j.desal.2011.01.051
  6. X.-Y. Li and X.-M. Wang, "Modeling of membrane fouling in a submerged membrane bioreactor", J. Membr. Sci., 278, 151 (2006). https://doi.org/10.1016/j.memsci.2005.10.051
  7. F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, "Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material", Water Res., 43, 1489 (2009). https://doi.org/10.1016/j.watres.2008.12.044
  8. D. H. Shin, S. I. Cheong, and J. W. Rhim, "Ions removal contaminated water with radioactive ions by reverse osmosis membrane process", Membr. J., 26, 401 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.401
  9. K. J. Kim and S.-H. Yoon, "Wastewater treatment using membrane bioreactors (MBR)", J. Korean Ind. Eng. Chem., 12, 239 (2001).
  10. J. I. Cho, G.-T. Kim, and Y.-C. Ahn, "A study on characteristics of filters for domestic household water purifier", KOSME, 37, 541 (2013).
  11. G.-N. Kim, Y.-H. Jung, J.-J. Lee, J.-K. Moon, C.-H. Jung, and E. S-. Chung, "Development of electrokinetic-flusing equipment for a remediation of soil contaminated with radionuclides", J. Kor. Rad. Waster soc., 6, 1 (2008).
  12. Q. Li, Z. Xu, and l. Pinnau, "Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux", J. Membr., Sci., 290, 173 (2007). https://doi.org/10.1016/j.memsci.2006.12.027
  13. T. Y. Cath, V. D. Adams, and A. E. Childress, "Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement", J. Membr., 228, 5 (2004). https://doi.org/10.1016/j.memsci.2003.09.006
  14. A. K. Ghosh, B.-H. Jeong, X. Huang, and Eric M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34 (2008). https://doi.org/10.1016/j.memsci.2007.11.038
  15. S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, and O. Kedem, "Surface modification of commercial composite polyamide reverse osmosis membranes", J. Membr., Sci., 139, 175 (1998).
  16. C. Yanagi and K. Mori, "Advanced reverse osmosis process with automatic sponge ball cleaning for the reclamation of municipal sewage", Desalination, 32, 391 (1980). https://doi.org/10.1016/S0011-9164(00)86039-7
  17. S. Judd, "The status of membrane bioreactor technology", Trends Biotechnol., 26, 109 (2008). https://doi.org/10.1016/j.tibtech.2007.11.005
  18. Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang, and X. Han, "Membrane cleaning in membrane bioreactor: A review" J. Membr., Sci., 468, 276 (2014). https://doi.org/10.1016/j.memsci.2014.05.060
  19. K. L. Hickenbottom, N. T. Hancock, N. R. Hutchings, E. W. Appleton, E. G. Beaudry, P. Xu, and T. Y. Cath, "Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations", Desalination, 312, 60 (2013). https://doi.org/10.1016/j.desal.2012.05.037