References
- Drobniewski FA. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324-338. https://doi.org/10.1128/CMR.6.4.324
- Anderson A, Ronner U, Granum PE. 1995. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 145-155. https://doi.org/10.1016/0168-1605(95)00053-4
- Gao YL, Jiang HH. 2005. Optimization of process conditions to inactivate Bacillus subtilis by high hydrostatic pressure and mild heat using response surface methodology. Biochem. Eng. J. 24: 43-48. https://doi.org/10.1016/j.bej.2005.01.023
- Head DS, Cenkowski S, Holley R, Blank G. 2008. Effects of superheated steam on Geobacillus stearothermophilus spore viability. J. Appl. Microbiol. 104: 1213-1220. https://doi.org/10.1111/j.1365-2672.2007.03647.x
- Setlow B, Loshon CA, Genest PC, Cowan AE, Setlow C, Setlow P. 2002. Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J. Appl. Microbiol. 92: 362-375. https://doi.org/10.1046/j.1365-2672.2002.01540.x
- Elhariry HM. 2011. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol. 28: 1266-1274. https://doi.org/10.1016/j.fm.2011.05.004
- Peng JS, Tsai WC, Chou CC. 2002. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 77: 11-18. https://doi.org/10.1016/S0168-1605(02)00060-0
- Flemming HC, Wingender J. 2001. Relevance of microbial extracellular polymeric substance (EPS) - Part I: Structural and ecological aspects. Water Sci. Technol. 43: 1-8.
- Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27: 1017-1032. https://doi.org/10.1080/08927014.2011.626899
- Kumar CG, Anand SK. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9
- Kreske AC, Ryu JH, Pettigrew CA, Beuchat LR. 2006. Lethality of chlorine, chlorine dioxide, and a commercial produce sanitizer to Bacillus cereus and Pseudomonas in a liquid detergent, on stainless steel, and in biofilm. J. Food Prot. 69: 2621-2634. https://doi.org/10.4315/0362-028X-69.11.2621
- Park HS, Choi HJ, Kim MD, Kim KH. 2013. Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus. Int. J. Food Microbiol. 166: 207-212. https://doi.org/10.1016/j.ijfoodmicro.2013.07.015
- Senna PM, Da Silva WJ, Del Bel Cury AA. 2010. Denture disinfection by microwave energy: influence of Candida albicans biofilm. Gerodontology 29: e186-e191.
- Gibson H, Taylor JH, Hall KE, Holah JT. 1999. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87: 41-48. https://doi.org/10.1046/j.1365-2672.1999.00790.x
- Woo I, Rhee I, Park H. 2000. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl. Environ. Microbiol. 66: 2243-2247. https://doi.org/10.1128/AEM.66.5.2243-2247.2000
- Celandroni F, Longo I, Tosoratti N, Giannessi F, Ghelardi E, Salvetti S, et al. 2004. Effect of microwave radiation on Bacillus subtilis spores. J. Appl. Microbiol. 97: 1220-1227. https://doi.org/10.1111/j.1365-2672.2004.02406.x
- Kim SY, Shin SJ, Song CH, Jo EK, Kim HJ, Park JK. 2009. Destruction of Bacillus licheniformis spores by microwave irradiation. J. Appl. Microbiol. 106: 877-885. https://doi.org/10.1111/j.1365-2672.2008.04056.x
- Welt BA, Tong CH, Rossen JL, Lund DB. 1994. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores. Appl. Environ. Microbiol. 60: 482-488.
- Zieli ski M, Ciesielski S, Cydzik-Kwiatkowska A, Turek J, Debowski M. 2007. Influence of microwave radiation on bacterial community structure in biofilm. Process Biochem. 42: 1250-1253. https://doi.org/10.1016/j.procbio.2007.05.008
- Fernandez M, Sanchez J. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451. Microbiology 148: 405-412. https://doi.org/10.1099/00221287-148-2-405
- Myers RH, Montgomery DC. 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons Inc., New York. USA.
- Vela GR, Wu JF. 1979. Mechanism of lethal action of 2,450- MHz radiation on microorganisms. Appl. Environ. Microbiol. 37: 550-553.
- Jeng DK, Kaczmarek KA, Woodworth AG, Balasky G. 1987. Mechanism of microwave sterilization in the dry state. Appl. Environ. Microbiol. 53: 2133-2137.
- Ponne CT, Bartels PV. 1995. Interaction of electromagnetic energy with biological material - relation to food processing. Radiat. Phys. Chem. 45: 591-607. https://doi.org/10.1016/0969-806X(94)00073-S
- Icier F, Baysal T. 2004. Dielectrical properties of food materials-1: factors affecting and industrial uses. Crit. Rev. Food Sci. Nutr. 44: 465-471. https://doi.org/10.1080/10408690490886692
- Hong SM, Park JK, Lee YO. 2004. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 38: 1615-1625. https://doi.org/10.1016/j.watres.2003.12.011
- Dreyfuss MS, Chipley JR. 1980. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microbiol. 39: 13-16.
- Kim SY, Jo EK, Kim HJ, Bai K, Park JK. 2008. The e ffects of high-power microwaves on the ultrastructure of Bacillus subtilis. Lett. Appl. Microbiol. 47: 35-40. https://doi.org/10.1111/j.1472-765X.2008.02384.x
Cited by
- Antimicrobial activity of extracts and phthalides occurring in Apiaceae plants vol.32, pp.8, 2017, https://doi.org/10.1002/ptr.6098
- Improving the quality of vegetable foodstuffs by microwave inactivation vol.29, pp.1, 2017, https://doi.org/10.1007/s10068-019-00652-2
- Efficient reduction in vegetative cells and spores of Bacillus subtilis by essential oil components‐coated silica filtering materials vol.86, pp.6, 2017, https://doi.org/10.1111/1750-3841.15748
- Thermal resistance and high-performance microwave decontamination assessment of Bacillus endospores isolated from food-grade herbal extracts vol.16, pp.12, 2021, https://doi.org/10.1371/journal.pone.0261988