DOI QR코드

DOI QR Code

Development of an anisotropic spatial interpolation method for velocity in meandering river channel

비등방성을 고려한 사행하천의 유속 공간보간기법 개발

  • You, Hojun (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Dongsu (Department of Civil & Environmental Engineering, Dankook University)
  • 유호준 (단국대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과)
  • Received : 2017.01.02
  • Accepted : 2017.05.22
  • Published : 2017.07.31

Abstract

Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

2차원 유속장(flow field)은 하천흐름의 특성을 이해하기 위한 중요한 수리학적 자료 중 하나로서, 수공구조물 위치선정 및 설계, 하천에서의 이송-확산 예측, 하천의 수리학적 거동을 예측하기 위한 중요한 기본 자료로 사용된다. 지금까지 이러한 하천흐름 특성을 예측하기 위해 제한적인 현장조건과 적절한 계측방법, 계측기기의 기술적 한계로 인해 현장실험 보다는 다양한 수치모형을 이용하여 왔다. 하지만 최근에는 계측기기의 발달로 과거보다 정확하고 정밀한 현장계측이 가능하여 졌으며, 현장 계측자료의 질적이고 양적인 수요를 만족시키고 있다. 대표적으로 초음파도플러유속계(ADCPs; Acoustic Doppler Current Profilers)는 유량을 정확하게 측정하는 것으로 유명하며, 2차원 뿐만 아니라 3차원 유속장 등 자세한 유속자료를 제공한다. 하지만 이러한 측정 능력에도 불구하고, ADCP를 활용한 유속 측정은 주로 횡단면 측정을 기본으로 수행하기 때문에, 수치모형의 결과와 같이 높은 밀도의 유속장을 얻기 위해서 공간보간기법이 활용되고 있다. 하지만 만곡이 존재하는 자연하천은 하도형상에 따라 유속이 지속적으로 변화하기 때문에 일반적인 공간보간기법을 적용하기 어렵다. 즉, 자연하천의 만곡에 따른 비등방성을 고려하지 않는다면, 역거리가중법(IDW)과 크리깅(Kriging)과 같은 일반적인 공간보간기법으로는 잘못된 결과를 초래할 수 있다. 본 연구에서는 이러한 문제점을 해결하고자 만곡이 존재하는 사행하천을 대상으로 방향성을 고려하기 위한 곡선좌표계와 비등방성을 고려하기 위한 비등방적 참조범위를 적용한 공간보간기법을 개발하였다. 본 연구에서 제시한 기법을 한국건설기술연구원 하천실험센터에 존재하는 3개의 사행수로가 포함된 실규모의 실험수로를 대상으로 적용한 결과, 평균제곱근오차와 상관계수는 기존의 공간보간기법과 비교하여 각각 41.5% 감소, 40.0%가 증가하여 정확성과 상관성이 개선되었다.

Keywords

References

  1. Ahn, J. M., and Park, I. H. (2012). "An assessment on the hydraulic characteristics of a multi-dimensional model in response to measurement resolution and spatial interpolation methods." Journal of Korean Society for Geospatial Information System, Vol. 20, No. 1, pp. 43-51. https://doi.org/10.7319/kogsis.2012.20.1.043
  2. Chrisman, N. R., and Network, G. (2009). History of the harvard laboratory for computer graphics: a poster exhibit. Canada: Departtement des Sciences Geomatiques Universite Laval.
  3. Decenciere, E., De Fouquet, C., and Meyer, F. (1998). "Applications of kriging to image sequence coding." Signal Processing: Image Communication, Vol. 13, No. 3, pp. 227-249. https://doi.org/10.1016/S0923-5965(98)00007-1
  4. Goff, J. A., and Nordfjord, S. (2004). "Interpolation of fluvial morphology using channel-oriented coordinate transformation: a case study from the New Jersey shelf." Mathematical Geology, Vol. 36, No. 6, pp. 643-658. https://doi.org/10.1023/B:MATG.0000039539.84158.cd
  5. Instruments, R. (1996). Principles of operation a practical primer. Available from RDInstruments.com.
  6. Jeong, H. S. (2000). An analysis of the flow characteristics in curved channels using RMA-2 model. Master's thesis, Kyonggi University.
  7. Kim, H. J., Cho, Y. S., and Kim, S. J. (2006). "Numerical analysis of two-dimenstional flow in curvilinear coordinate system." Proceedings of the Korea Water Resources Association Conference, Korea Water Resources Association, Jeju, Korea, Vol. 1, pp. 402-407.
  8. Kim, J. M., Kim, D. S., Son, G. S., and Kim, S. J. (2015). "Accuracy analysis of velocity and water depth measurement in the straight channel using ADCP." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 5, pp. 367-377. https://doi.org/10.3741/JKWRA.2015.48.5.367
  9. Krige, D. (1966). "Two-dimensional weighted moving average trend surfaces for ore-evaluation." Symposium on mathematical statistical statistics and computer applications in ore valuation, Journal of the South African Institute of Mining and Metallurgy, Johannesberg, South Africa, Vol. 1, pp. 13-79.
  10. Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B. (2010). "Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers." Journal of Hydrology , Vol. 394, No. 1, pp. 42-52. https://doi.org/10.1016/j.jhydrol.2010.05.049
  11. Lukaszyk, S. (2004). "A new concept of probability metric and its applications in approximation of scattered data sets." Computational Mechanics, Vol. 33, No. 4, pp. 299-304. https://doi.org/10.1007/s00466-003-0532-2
  12. Merwade, V. (2009). "Effect of spatial trends on interpolation of river bathymetry." Journal of Hydrology, Vol. 371, No. 1, pp. 169-181. https://doi.org/10.1016/j.jhydrol.2009.03.026
  13. Merwade, V., Maidment, D. R., and Goff, J. A. (2006). "Anisotropic considerations while interpolating river channel bathymetry." Journal of Hydrology, Vol. 331, No. 3, pp. 731-741. https://doi.org/10.1016/j.jhydrol.2006.06.018
  14. Muste, M., Yu, K., Pratt, T., and Abraham, D. (2004). "Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part II: fixed-vessel measurements." Flow Measurement and Instrumentation, Vol. 15, No. 1, pp. 17-28. https://doi.org/10.1016/j.flowmeasinst.2003.09.002
  15. Philip, G. M., and Watson, D. F. (1982). "A precise method for determining contoured surfaces." Australian Petroleum Exploration Association Journal, Vol. 22, No. 1, pp. 205-212.
  16. Seo, I. W., Lee, K. W., and Baek, K. O. (2006). "Flow structure and turbulence characteristics in meandering channel." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 26, No. 5B, pp. 469-479.
  17. Seo, I. W., Sung, K. H., Baek, K. O., and Jeong, S. J. (2004). "Experimental study on flow characteristics in meandering channel." Journal of Korea Water Resources Association, KWRA, Vol. 37, No. 7, pp. 527-540. https://doi.org/10.3741/JKWRA.2004.37.7.527
  18. Shepard, D. (1968). "A two-dimensional interpolation function for irregularly-spaced data." Proceedings of the 1968 23rd ACM National Conference, ACM, Vol. pp. 517-524.
  19. Son, G. S., You, H. J., and Kim, D. S. (2014). "Feasibility calcuation of fast MECH for 2D velocity distribution simulation in meandering channel." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, pp. 1753-1764. https://doi.org/10.12652/Ksce.2014.34.6.1753
  20. Tsubaki, R., and Fujita, I. (2007). "Interpolation and correction of 3-D velocity distribution from randomly measured ADCP data." Hydraulic Measurements and Experimental Methods Conference, ASCE, Lake Placid, NY, Vol. 1, pp. 238-241.
  21. Tsubaki, R., Kawahara, Y., Muto, Y., and Fujita, I. (2012). "New 3-D flow interpolation method on moving ADCP data." Water Resources Research, Vol. 48, No. 5, pp. W05539.
  22. Yang, C. S., Kao, S. P., Lee, F. B., and Hung, P. S. (2004). "Twelve different interpolation methods: a case study of surfer 8.0." Proceedings of the XXth ISPRS Congress, ISPRS, Istanbul, Turkey, Vol. 35. pp. 778-785.