DOI QR코드

DOI QR Code

REDUCING SUBSPACES OF A CLASS OF MULTIPLICATION OPERATORS

  • Liu, Bin (School of Mathematical Sciences Ocean University of China) ;
  • Shi, Yanyue (School of Mathematical Sciences Ocean University of China)
  • 투고 : 2016.07.25
  • 심사 : 2016.11.29
  • 발행 : 2017.07.31

초록

Let $M_{z^N}(N{\in}{\mathbb{Z}}^d_+)$ be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n:n{\in}{\mathbb{Z}}^d_+\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that d = 2, we find all the minimal reducing subspaces of $M_{z^N}$ ($N=(N_1,N_2)$, $N_1{\neq}N_2$) on weighted Bergman space $A^2_{\alpha}({\mathbb{B}}_2)$(${\alpha}$ > -1) and Hardy space $H^2({\mathbb{B}}_2)$, and characterize the structure of ${\mathcal{V}}^{\ast}(z^N)$, the commutant algebra of the von Neumann algebra generated by $M_{z^N}$.

키워드

과제정보

연구 과제 주관 기관 : NSFC

참고문헌

  1. M. Albaseer, Y. Lu, and Y. Shi, Reducing subspaces for a class of Toeplitz Operators on the Bergman space of the bidisk, Bull. Korean Math. Soc. 52 (2015), no. 5, 1649-1660. https://doi.org/10.4134/BKMS.2015.52.5.1649
  2. H. Dan and H. Huang, Multiplication operators defined by a class of polynomials on $L\frac{2}{{\alpha}}({\mathbb{D}}^2)$, Integral Equations Operator Theory 80 (2014), no. 4, 581-601. https://doi.org/10.1007/s00020-014-2176-3
  3. K. Guo and H. Huang, Multiplication operators on the Bergman space, Lecture Notes in Mathematics, 2145, Springer, 2015.
  4. Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk, J. Math. Soc. Japan 62 (2010), no. 3, 745-765. https://doi.org/10.2969/jmsj/06230745
  5. L. Shan, Reducing subspaces for a class of analytic Toeplitz operators on the bidisc, J. Fudan Univ. Nat. Sci. 42 (2003), no. 2, 196-200.
  6. Y. Shi and Y. Lu, Reducing subspaces for Toeplitz operators on the polydisk, Bull. Korean Math. Soc. 50 (2013), no. 2, 687-696. https://doi.org/10.4134/BKMS.2013.50.2.687
  7. X. Wang, H. Dan, and H. Huang, Reducing subspaces of multiplication operators with the symbol ${\alpha}z^k$ + ${\beta}w^l$ on $L\frac{2}{{\alpha}}({\mathbb{D}}^2)$, Sci. China Math. 58 (2015), no. 10, 2167-2180.