DOI QR코드

DOI QR Code

ON A CLASS OF LOCALLY PROJECTIVELY FLAT GENERAL (α, β)-METRICS

  • Mo, Xiaohuan (School of Mathematical Sciences Peking University) ;
  • Zhu, Hongmei (College of Mathematics and Information Science Henan Normal University)
  • Received : 2016.07.01
  • Accepted : 2016.11.03
  • Published : 2017.07.31

Abstract

General (${\alpha},{\beta}$)-metrics form a rich class of Finsler metrics. They include many important Finsler metrics, such as Randers metrics, square metrics and spherically symmetric metrics. In this paper, we find equations which are necessary and sufficient conditions for such Finsler metric to be locally projectively flat. By solving these equations, we obtain all of locally projectively flat general (${\alpha},{\beta}$)-metrics under certain condition. Finally, we manufacture explicitly new locally projectively flat Finsler metrics.

Keywords

References

  1. S. Bacso and M. Matsumoto, On Finsler spaces of Douglas typea generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406.
  2. S. S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. x+192pp.
  3. J. Douglas, The general geometry of paths, Ann. Math. 29 (1927/1928), no. 1-4, 143-168.
  4. B. Li and Z. Shen, On Randers metrics of quadratic Riemann curvature, Internat. J. Math. 20 (2009), no. 3, 369-376. https://doi.org/10.1142/S0129167X09005315
  5. H. Liu and X. Mo, Examples of Finsler metrics with special curvature properties, Math. Nachr. 288 (2015), no. 13, 1527-1537. https://doi.org/10.1002/mana.201400124
  6. X. Mo, A global classification result for Randers metrics of scalar curvature on closed manifolds, Nonlinear Anal. 69 (2008), 2996-3004. https://doi.org/10.1016/j.na.2007.08.067
  7. X. Mo, Finsler metrics with constant (or scalar) flag curvature, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), no. 3, 411-427. https://doi.org/10.1007/s12044-012-0078-3
  8. X. Mo and X. Wang, On projectively related spherically symmetric Finsler metrics, Publ. Math. Debrecen. 88 (2016), no. 1-2, 249-259. https://doi.org/10.5486/PMD.2015.7457
  9. X. Mo, L. Zhou, and H. Zhu, On a class of Finsler metrics of constant curvature, accepted for publication in: Houston Journal of Mathematics.
  10. X. Mo and H. Zhu, On a class of locally projectively flat Finsler metrics, to appear in: Bulletin of the Iran Mathematical Society.
  11. Y. Shen, General solutions of some differential equations on Riemannian manifolds, (Chinese) J. Math. Res. Exposition 2 (1982), no. 2, 55-60.
  12. Z. Shen, On projectively flat (${\alpha}$, ${\beta}$)-metrics, Canad. Math. Bull. 52 (2009), no. 1, 132-144. https://doi.org/10.4153/CMB-2009-016-2
  13. Z. Shen and H. Xing, On Randers metrics with isotropic S-curvature, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 5, 789-796. https://doi.org/10.1007/s10114-007-5194-0
  14. Z. Shen and C. Yu, On a class of Einstein Finsler metrics, Internat. J. Math. 25 (2014), no. 4, 1450030, 18 pages.
  15. Q. Xia, On a class of projectively flat Finsler metrics, Differential Geom. Appl. 44 (2016), 1-16. https://doi.org/10.1016/j.difgeo.2015.10.002
  16. C. Yu and H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2011), no. 2, 244-254. https://doi.org/10.1016/j.difgeo.2010.12.009
  17. H. Zhu, On general (${\alpha}$, ${\beta}$)-metrics with vanishing Douglas curvature, Internat. J. Math. 26 (2015), no. 9, 1550076, 16 pages.
  18. H. Zhu, A class of Finsler metrics of scalar flag curvature, Differential Geom. Appl. 40 (2015), 321-331. https://doi.org/10.1016/j.difgeo.2015.02.011