References
- P. Barry, General Eulerian polynomials as moments using exponential Riordan arrays, J. Integer Seq. 16 (2013), no. 9, Article 13.9.6, 15 pp.
- A. Bayad and T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys. 19 (2012), no. 1, 1-10. https://doi.org/10.1134/S1061920812010013
- L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28-33. https://doi.org/10.1007/BF01900520
- L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
- M. Domokos, Eulerian polynomial identities and algebras satisfying a standard identity, J. Algebra 169 (1994), no. 3, 913-928. https://doi.org/10.1006/jabr.1994.1317
- Y. He and C. Wang, New symmetric identities involving the Eulerian polynomials, J. Comput. Anal. Appl. 17 (2014), no. 3, 498-504.
- F. Hirzebruch, Eulerian polynomials, Munster J. Math. 1 (2008), 9-14.
- D. Kang, J. Jeong, S.-J. Lee, and S.-H. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37-43.
- D. S. Kim and T. Kim, A note on q-Eulerian polynomials, Proc. Jangjeon Math. Soc. 16 (2013), no. 4, 445-450.
- D. S. Kim and T. Kim, Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation, Bull. Korean Math. Soc. 52 (2015), no. 6, 2001-2010. https://doi.org/10.4134/BKMS.2015.52.6.2001
- D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal. 2012 (2012), Art. ID 269640, 10 pp.
- D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379-389.
-
D. S. Kim, T. Kim, and H. Y. Lee, p-adic q-integral on
${\mathbb{Z}}_p$ associated with Frobenius-type Eulerian polynomials and umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 243-251. - T. Kim and D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from nonlinear differential equations, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2086-2098. https://doi.org/10.22436/jnsa.009.05.14
- T. Kim and D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 88-92. https://doi.org/10.1134/S1061920816010064
- T. Kim, D. S. Kim, S.-H. Rim, and D. V. Dolgy, Some identities of Frobenius-type Eulerian polynomials arising from umbral calculus, Int. J. Math. Anal. (Ruse) 7 (2013), no. 53-56, 2637-2644. https://doi.org/10.12988/ijma.2013.39221
- T. Kim and T Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 4, 484-493. https://doi.org/10.1134/S1061920814040062
- P. N. Rai and S. N. Singh, On the generalization of Eulerian polynomials, Bull. Calcutta Math. Soc. 72 (1980), no. 4, 229-232.
- S.-H. Rim, J. Jeong, and J.-W. Park, Some identities involving Euler polynomials arising from a non-linear differential equation, Kyungpook Math. J. 53 (2013), no. 4, 553-563. https://doi.org/10.5666/KMJ.2013.53.4.553