DOI QR코드

DOI QR Code

REVISIT NONLINEAR DIFFERENTIAL EQUATIONS ASSOCIATED WITH EULERIAN POLYNOMIALS

  • Kim, Dae San (Department of Mathematics Sogang University) ;
  • Kim, Taekyun (Department of Mathematics Kwangwoon University)
  • Received : 2016.03.31
  • Accepted : 2017.02.20
  • Published : 2017.07.31

Abstract

In this paper, we present nonlinear differential equations arising from the generating function of the Eulerian polynomials. In addition, we give explicit formulae for the Eulerian polynomials which are derived from our nonlinear differential equations.

Keywords

References

  1. P. Barry, General Eulerian polynomials as moments using exponential Riordan arrays, J. Integer Seq. 16 (2013), no. 9, Article 13.9.6, 15 pp.
  2. A. Bayad and T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys. 19 (2012), no. 1, 1-10. https://doi.org/10.1134/S1061920812010013
  3. L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28-33. https://doi.org/10.1007/BF01900520
  4. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
  5. M. Domokos, Eulerian polynomial identities and algebras satisfying a standard identity, J. Algebra 169 (1994), no. 3, 913-928. https://doi.org/10.1006/jabr.1994.1317
  6. Y. He and C. Wang, New symmetric identities involving the Eulerian polynomials, J. Comput. Anal. Appl. 17 (2014), no. 3, 498-504.
  7. F. Hirzebruch, Eulerian polynomials, Munster J. Math. 1 (2008), 9-14.
  8. D. Kang, J. Jeong, S.-J. Lee, and S.-H. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37-43.
  9. D. S. Kim and T. Kim, A note on q-Eulerian polynomials, Proc. Jangjeon Math. Soc. 16 (2013), no. 4, 445-450.
  10. D. S. Kim and T. Kim, Some identities for Bernoulli numbers of the second kind arising from a nonlinear differential equation, Bull. Korean Math. Soc. 52 (2015), no. 6, 2001-2010. https://doi.org/10.4134/BKMS.2015.52.6.2001
  11. D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal. 2012 (2012), Art. ID 269640, 10 pp.
  12. D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379-389.
  13. D. S. Kim, T. Kim, and H. Y. Lee, p-adic q-integral on ${\mathbb{Z}}_p$ associated with Frobenius-type Eulerian polynomials and umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 243-251.
  14. T. Kim and D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from nonlinear differential equations, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2086-2098. https://doi.org/10.22436/jnsa.009.05.14
  15. T. Kim and D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 88-92. https://doi.org/10.1134/S1061920816010064
  16. T. Kim, D. S. Kim, S.-H. Rim, and D. V. Dolgy, Some identities of Frobenius-type Eulerian polynomials arising from umbral calculus, Int. J. Math. Anal. (Ruse) 7 (2013), no. 53-56, 2637-2644. https://doi.org/10.12988/ijma.2013.39221
  17. T. Kim and T Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 4, 484-493. https://doi.org/10.1134/S1061920814040062
  18. P. N. Rai and S. N. Singh, On the generalization of Eulerian polynomials, Bull. Calcutta Math. Soc. 72 (1980), no. 4, 229-232.
  19. S.-H. Rim, J. Jeong, and J.-W. Park, Some identities involving Euler polynomials arising from a non-linear differential equation, Kyungpook Math. J. 53 (2013), no. 4, 553-563. https://doi.org/10.5666/KMJ.2013.53.4.553