DOI QR코드

DOI QR Code

New Recorded Species in Three Genera of the Sordariomycetes in Korea

  • Park, Sangkyu (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Ten, Leonid (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Back, Chang-Gi (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Jae-Jin (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2017.04.03
  • Accepted : 2017.06.05
  • Published : 2017.06.30

Abstract

In an ongoing survey of Korean indigenous fungi, three fungal strains belonging to the Sordariomycetes were isolated from soil samples. These strains were designated KNU16-001, KNU16-002, and KNU16-009, and identified as Ambrosiella grosmanniae, Acremonium sclerotigenum, and Trichocladium asperum, respectively, based on morphological characterization and phylogenetic analysis using internal transcribed spacer region sequences of ribosomal DNA. This is the first report of these species in Korea.

Keywords

References

  1. Taylor DL, Sinsabaugh RL. The soil fungi: occurrence, phylogeny and ecology. In: Paul E, editor. Soil microbiology, ecology and biochemistry. Waltham (MA): Academic Press; 2015. p. 77-109.
  2. Anderson IC, Cairney JW. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 2004; 6:769-79. https://doi.org/10.1111/j.1462-2920.2004.00675.x
  3. Gadd GM. Mycotransformation of organic and inorganic substrates. Mycologist 2004;18:60-70. https://doi.org/10.1017/S0269915X04002022
  4. Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature 2015;528:69-76.
  5. Verbruggen E, van der Heijden MG, Rillig MC, Kiers ET. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 2013;197:1104-9. https://doi.org/10.1111/j.1469-8137.2012.04348.x
  6. Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 2013;61:146-57. https://doi.org/10.1016/j.fgb.2013.08.016
  7. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 2006;98:1076-87. https://doi.org/10.1080/15572536.2006.11832635
  8. Maharachchikumbura SN, Hyde KD, Jones EB, McKenzie EH, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. Families of Sordariomycetes. Fungal Divers 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  9. Jones EB, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 2015;73:1-72. https://doi.org/10.1007/s13225-015-0339-4
  10. Kaewchai S, Soytong K, Hyde KD. Mycofungicides and fungal biofertilizers. Fungal Divers 2009;38:25-50.
  11. Martinez-Klimova E, Rodriguez-Pena K, Sanchez S. Endophytes as sources of antibiotics. Biochem Pharmacol 2017;134:1-17.
  12. Adrio JL, Demain AL. Fungal biotechnology. Int Microbiol 2003;6:191-9. https://doi.org/10.1007/s10123-003-0133-0
  13. de Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, Wingfield MJ. Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 2008;100:647-61. https://doi.org/10.3852/07-157R
  14. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  17. Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PH, Castrillo LA, Reed SE. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol 2015;119:1075-92. https://doi.org/10.1016/j.funbio.2015.08.002
  18. Summerbell RC, Levesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW. Microcoding: the second step in DNA barcoding. Philos Trans R Soc Lond B Biol Sci 2005;360:1897-903. https://doi.org/10.1098/rstb.2005.1721
  19. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012; 109:6241-6. https://doi.org/10.1073/pnas.1117018109
  20. Brader L. Etude de la relation entre le scolyte des rameaux du cafeir, Xyleborus compactus Eichh. (X. morstatti Hag.), et sa plante-hote. Mededelingen (Landbouwhogeschool Wageningen) 1964;64:1-109.
  21. Von Arx JA, Hennebert GL. Deux champignons ambrosia. Mycopathol Mycol Appl 1965;25:309-15. https://doi.org/10.1007/BF02049918
  22. Harrington TC, Aghayeva DN, Fraedrich SW. New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 2010;111:337-61. https://doi.org/10.5248/111.337
  23. Summerbell RC, Gueidan C, Schroers HJ, de Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 2011;68:139-62. https://doi.org/10.3114/sim.2011.68.06
  24. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.
  25. Das S, Saha R, Dar SA, Ramachandran VG. Acremonium species: a review of the etiological agents of emerging hyalohyphomycosis. Mycopathologia 2010;170:361-75. https://doi.org/10.1007/s11046-010-9334-1
  26. Oh SY, Nam KW, Yoon DH. Identification of Acremonium acutatum and Trichothecium roseum isolated from grape with white stain symptom in Korea. Mycobiology 2014;42:269-73. https://doi.org/10.5941/MYCO.2014.42.3.269
  27. Lo Piccolo S, Alfonzo A, Giambra S, Conigliaro G, Lopez- Llorca LV, Burruano S. Identification of Acremonium isolates from grapevines and evaluation of their antagonism towards Plasmopara viticola. Ann Microbiol 2015;65:2393-403. https://doi.org/10.1007/s13213-015-1082-5
  28. Perdomo H, Sutton DA, Garcia D, Fothergill AW, Cano J, Gene J, Summerbell RC, Rinaldi MG, Guarro J. Spectrum of clinically relevant Acremonium species in the United States. J Clin Microbiol 2011;49:243-56. https://doi.org/10.1128/JCM.00793-10
  29. Hughes SJ. Trichocladium Harz. Trans Br Mycol Soc 1952;35: 152-7. https://doi.org/10.1016/S0007-1536(52)80022-1
  30. Hambleton S, Nickerson NL, Seifert KA. Leohumicola, a new genus of heat-resistant hyphomycetes. Stud Mycol 2005;53:29-52. https://doi.org/10.3114/sim.53.1.29
  31. Reblova M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, et al. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 2016;7:131-53. https://doi.org/10.5598/imafungus.2016.07.01.08
  32. Goh TK, Hyde KD. A synopsis of Trichocladium species, based on the literature. Fungal Divers 1999;2:101-18.
  33. Wicklow DT, Roth S, Deyrup ST, Gloer JB. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 2005;109(Pt 5):610-8. https://doi.org/10.1017/S0953756205002820
  34. Hijikawa Y, Matsuzaki M, Suzuki S, Inaoka DK, Tatsumi R, Kido Y, Kita K. Re-identification of the ascofuranone-producing fungus Ascochyta viciae as Acremonium sclerotigenum. J Antibiot (Tokyo) 2017;70:304-7. https://doi.org/10.1038/ja.2016.132
  35. Guo H, Sun B, Gao H, Niu S, Liu X, Yao X, Che Y. Trichocladinols A-C, cytotoxic metabolites from a Cordycepscolonizing ascomycete Trichocladium opacum. Eur J Org Chem 2009;32:5525-30.