DOI QR코드

DOI QR Code

수락산에 서식하는 계곡산개구리(Rana huanrensis Fei, Ye & Huang, 1991) 유생의 서식지 면적에 따른 생장률 연구

The Effect of Habitat Size on Huanren Brown Frog (Rana huanrensis) Larvae's Growth Rate in Mt. Surak

  • 나수미 (서울여자대학교 대학원, 생명환경공학과) ;
  • 엄예원 (서울여자대학교, 생명환경공학과) ;
  • 김현정 (서울여자대학교, 생물학과) ;
  • 안치경 (녹인) ;
  • 이훈복 (서울여자대학교 대학원, 생명환경공학과)
  • Na, Sumi (Department of Bio & Environmental Technology, Graduate School of Seoul Women's University) ;
  • Um, Yewon (Department of Bio & Environmental Technology, Seoul Women's University) ;
  • Kim, Hyun-jung (Department of Biology, School of Seoul Women's University) ;
  • An, Chi-Kyung (Login) ;
  • Yi, Hoonbok (Department of Bio & Environmental Technology, Graduate School of Seoul Women's University)
  • 투고 : 2017.02.03
  • 심사 : 2017.05.23
  • 발행 : 2017.06.30

초록

본서식지의 면적이 계곡산개구리 (Rana huarenensis)에게 미치는 영향을 알아보기 위하여 서울시 노원구 상계동에 위치한 수락산 일대 계곡에서 연구를 실시하였다. 조사지역은 계곡을 계곡산개구리 서식지의 면적의 크기에 따라 가장 좁은 면적의 S1($3.91m^2$), 중간 면적의 S2($4.42m^2$), 가장 넓은 면적의 S3($38.37m^2$), 3곳으로 나눈 후 각 조사지역에서 3월부터 6월까지 주 2회 15개체의 계곡산개구리 유생을 무작위로 포획하여 개체의 길이를 측정하였으며, 계곡의 습도, 기온, 수온을 측정하였다. 부화율은 S2지점에서 세 개의 난괴를 채집하여 측정하였다. 실험구별 서식지의 면적을 측정한 결과, 실험기간 중 강우량이 적었기 때문에 모든 실험구의 서식지 면적이 감소하였으며, S2지점은 눈에 띄게 줄어 들지 않았으나, S1은 원래 서식지의 4분의 1이 줄어들었으며 S3지점은 2분의 1이 감소하였다. 실험구별 평균대기습도와, 실험구별 평균기온, 실험구별 평균수온은 F-test결과 통계적으로 유의한 차이가 없었다. 부화율을 분석한 결과, 평균 부화율은 $76.84{\pm}18.23%$으로 확인되었다. 실험구별 유생 개체의 길이를 측정 한 결과, 통계적으로 차이가 있었으며, 서식지의 면적이 넓어짐에 따라 개체의 길이가 증가하였다 (F-test p< 0.05). 발생기간을 측정한 결과, 서식지의 면적이 넓을수록 개체의 발생속도가 빨라짐을 확인하였다. 실험구별 아성체 개체의 평균 길이를 분석한 결과, 통계적으로 차이가 있었으며, 개체의 길이는 S1, S3, S2순서로 증가하였다. 서식지 면적 변화가 없었던 S2의 개체의 크기가 가장 큰 것으로 보아 본 연구를 통해 계곡산개구리의 서식지 면적의 민감성을 알 수 있었다 (F-test p<0.05). 추후 본 연구의 결과를 바탕으로 고도의 차이가 계곡산개구리의 생장에 미치는 영향에 대한 실험을 진행한다면 계곡산개구리 개체군의 서식환경을 이해하는데 큰 도움을 줄 것으로 기대된다.

This study was executed to know the effect of the habitat size on huanren brown frog (Rana huanrensis) larvae's growth. We've conducted the study on Mt. Surak in Sanggye-dong, Nowon-gu, Seoul. Our study site was discriminated the huanren brown frog larvae's habitat into the three different areas, such as small area (S1, $3.91m^2$), middle area (S2, $4.42m^2$), and large area (S3, $38.37m^2$) in the same water channel. We measured two times per a week the 15 huanren brown frog larvae's body length, and developmental stages (foreleg, hind leg, tail length) including the environmental factors (humidity, air temperature and water temperature) of the study site from March 30 to June 28 in 2016. The only hatching rate was measured for the three egg sacs at the S2 study site. We found that the average hatching rate was $76.84{\pm}18.23(%)$ at S2. Generally, because of less precipitation during our study periods, all habitat areas for our study site were gradually decreased. The middle area, S2, was not reduced, the small area, S1, was reduced more than a fourth, and the largest area, S3, was drastically reduced more than half from initial area. There was no statistically difference among the three study sites for the three environmental factors (average humidity, average air temperature, and average water temperature) by F-test, but there were significant difference among the three site for the larvae's body length (F-test p< 0.05). Therefore, the larger of habitat areas, the larger of the larvae length as well as the faster of the larvae's developmental stages. When we measured the body lengths of immature huanren brown frogs, the immature frog of S1 was smallest, the immature frog of S3 was middle lenght, and the immature frog of S2 was largest. There were statistically different among the three study sites for the immature huanren brown frogs (F-test, p< 0.05). Because the S2 study site was relatively stable without rarely changing the study area, it meant that huanren brown frog was sensitive to habitat areas. Based on the results of this study, if we study on the effect of the altitude on the growth rate of huanren brown frog, it must be helpful in understanding the habitat environment of the population of huanren brown frog.

키워드

참고문헌

  1. Beebee, T.J. and Griffiths, R.A. 2005. The amphibian decline crisis: a watershed for conservation biology?. Biological Conservation 125(3), 271-285. https://doi.org/10.1016/j.biocon.2005.04.009
  2. Blaustein, A.R. and Wake, D.B. 1995. The puzzle of declining amphibian populations. Scientific American 272(4), 52-57. https://doi.org/10.1038/scientificamerican0495-52
  3. Blaustein, A.R., Wake, D.B., and Sousa, W.P. 1994. Amphibian declines: judging stability, persistence, and susceptibility of popula- tions to local and global extinctions. Conserv Biol 8: 60-71. https://doi.org/10.1046/j.1523-1739.1994.08010060.x
  4. Blaustein, A.R. and Wake, D.B. 1990. Declining amphibian populations: a global phenomenon? Trends Ecol Evol 5: 203-204. https://doi.org/10.1016/0169-5347(90)90129-2
  5. Carey, C. and Alexander, M.A. 2003. Climate change and amphibian declines: is there a link? Divers Distrib 9: 111-121. https://doi.org/10.1046/j.1472-4642.2003.00011.x
  6. Cogger, H.G., Zweifel, R.G., and Kirshner, D. 1998. Encyclopedia of reptiles & amphibians. Weldon Owen.
  7. Collins, J.P. and Storfer, A. 2003. Global amphibian declines: sorting the hypotheses. Divers Distrib 9: 89-98. https://doi.org/10.1046/j.1472-4642.2003.00012.x
  8. Kim, E.J. and Chung, H. 2014. A Study on Body Condition by Habitat in Larvae Korea Salamander. Korean J. Environ. Biol 32(1), 68-74. (in Korean) https://doi.org/10.11626/KJEB.2014.32.1.068
  9. Houlahan, J.E., Findley, C.S., Schmidt, B.R., Meyer, A.H. and Kuzmin, S.L. 2000. Quantitative evidence for global amphibian popula- tion declines. Nature 404: 752-755. https://doi.org/10.1038/35008052
  10. Song, J.E. and Lee, I.S. 2009. Elevation Distribution of Korean Amphibians. The Korean Society of Herpetologists 1.1: 15-19. (in Korean)
  11. Song, J.E., Kim, M.S., Kim, I.S., Kim, H.T., Roh, I., Seo, S.W., Seo, E.K., Seo, J.K., Yang, J.Y., Woo, K.D., Won, H.J., lee, Y.G., Lim, Y.H., Han, S.H. and Moon, M.G. 2009. Roadkill of Amphibians in the Korea National Park. korean Journal of environment and ecology 23(2): 187-193. (in Korean)
  12. Ji, W. and Jeske, C. 2000. Spatial modeling of the geographic distribution of wildlife populations: a case study in the lower Mississippi river region. Ecological Modelling 132(1): 95-104. https://doi.org/10.1016/S0304-3800(00)00307-0
  13. Heo, J.H., li-hun Kim, kim, J.K., lee, H.J., Jeong, S.M., Ra, N.Y., lee, J.H. and Park. D.S., 2013. Climate Parameters Influencing the Breeding Migration of Rana Huarenensis and Hynobius leechii in Woraksan National Park. The Korean Society of Herpetologists: 35-36. (in Korean)
  14. Kiesecker, J.M., Blaustein, A.R. and Belden, L.K. 2001. Complex causes of amphibian declines. Nature 410: 681-683. https://doi.org/10.1038/35070552
  15. La Marca, E., Lips, K.R., Lotters, S., Puschendorf, R., Ibanez, R., Rueda-Almonacid, J.V., Schulte, R., Marty, C., Castro, F., Manzanilla-Puppo, J., Garcfa-Perez, J.E., Bolanos, F., Chaves, G., Pounds, J.A., Toral, E. and Young, B.E. 2005. Catastrophic population declines and extinctions in neotropical Harle- quin frogs (Bufonidae: Atelopus). Biotropica 37: 190-201. https://doi.org/10.1111/j.1744-7429.2005.00026.x
  16. Laurance, W.F. 1996. Catastrophic declines of Australian rain- forest frogs: is unusual weather responsible? Biol Conserv 77: 203-212. https://doi.org/10.1016/0006-3207(95)00142-5
  17. Li, W., Wang, Z., Ma, Z., and Tang, H. 1997. A regression model for the spatial distribution of red-crown crane in yancheng Biosphere Reserve. China. Ecological Modelling 103(2): 115-121. (in Chinese) https://doi.org/10.1016/S0304-3800(97)00077-X
  18. Lindenmayer, D.B., Cunningham, R.B., Pope, M.L. and Doonnelly, C.F. 1999. The response of arboreal marsupials to landscape context: a large-scale fragmentation study. Ecological Application 9: 594-611. https://doi.org/10.1890/1051-0761(1999)009[0594:TROAMT]2.0.CO;2
  19. Lips, K.R. 1998. Decline of a tropical montane amphibian fauna. Conserv Biol 12: 106-117. https://doi.org/10.1046/j.1523-1739.1998.96359.x
  20. Lips, K.R., Reaser, J.K. Young, B.E. and Ibanez, R. 2001. Amphibian monitoring in latin america; a protocol manual. The Society for the Study of Amphibians and Reptiles.
  21. Marsh, D.M. and Perman. P.B. 1997. Effects of habitat fragmentation on the abundance of two species of Leptodactylid frogs in an Andean montane forest. Conservation Biology 11: 1323-1328. https://doi.org/10.1046/j.1523-1739.1997.95519.x
  22. Myung. C.G. 2003. Amphibian Fauna in the Mt. Myungji. Korean Journal of Environmental Biology. 21.2: 203-207. (in Korean)
  23. Pausas, J. G., Braiyhwaite. L.W. and Austin. M.P. 1995. Modelling habitat quality for arboreal marsupials in the South Coastal forests of New South Wales, Australia. Forest Ecology and Management 78: 39-49. https://doi.org/10.1016/0378-1127(95)03598-5
  24. Pearman, P.B. 1997. Correlates of amphibian diversity in an altered landscape of Amazonian Ecuador. Conservation Biology 11: 1211-1225. https://doi.org/10.1046/j.1523-1739.1997.96202.x
  25. Pearman, P.B. 1993. Effects of habitat size on tadpole populations. Ecology: 1982-1991.
  26. Pounds, J.A. 2001. Climate and amphibian declines. Nature 410: 639-640. https://doi.org/10.1038/35070683
  27. Pounds, J.A. and Crump. M.L. 1994. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv Biol 8: 72-85. https://doi.org/10.1046/j.1523-1739.1994.08010072.x
  28. Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. and Pounds, J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421(6918), 57-60. https://doi.org/10.1038/nature01333
  29. Saunders, D.A., Arnoil, G. W., Burbidge, A.A. and Hopkins, A.J.M. 1987. Nature Conservation: The Role of Remnats Of Native Vegetation. Surrey Beatty and Sons, Chipping Norton.
  30. Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodngues, A.S.L., Fischman, D.L. and Waller, R.W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786. https://doi.org/10.1126/science.1103538
  31. Na, S.M., Hwang, J.S., Jeon, H.J., Kim, H.J., An, C.K. and Yi, H.B. 2015. The effect of three different water temperatures on Huanren brown frog (Rana huarenensis. Fei, Ye & Huang, 1991)'s growth. Cheongchonnongchon. 17, 271-288. (in Korean)
  32. Na, S.N., Shim, J.E., Kim, H.J., An, C.K. and Yi, H.B. 2015. The effect of three different water temperatures in our research facility on Huanren brown frog (Rana huanrensis) egg's hatching rate, hatching periods, and larvae's growth. Journal of Wetlands Research, 17(3), 320-324. (in Korean) https://doi.org/10.17663/JWR.2015.17.3.320
  33. Wyman, R.L. 1990. What's happening to the amphibians? Conservation Biology 4: 350-352. https://doi.org/10.1111/j.1523-1739.1990.tb00307.x