DOI QR코드

DOI QR Code

Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor

단일반응기에서 마이크로버블-산소를 이용한 가축분뇨의 유기오염물질, 질소 및 인의 동시 제거

  • Jang, Jae Kyung (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jin, Yu Jeong (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Sukwon (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Taeyoung (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Paek, Yee (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sung, Je Hoon (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Young Hwa (National Institute of Agricultural Sciences, Rural Development Administration)
  • 장재경 (농촌진흥청 국립농업과학원) ;
  • 진유정 (농촌진흥청 국립농업과학원) ;
  • 강석원 (농촌진흥청 국립농업과학원) ;
  • 김태영 (농촌진흥청 국립농업과학원) ;
  • 백이 (농촌진흥청 국립농업과학원) ;
  • 성제훈 (농촌진흥청 국립농업과학원) ;
  • 김영화 (농촌진흥청 국립농업과학원)
  • Received : 2017.10.12
  • Accepted : 2017.11.06
  • Published : 2017.11.30

Abstract

The effects of microbubble-oxygen physicochemical method for the removal of organic pollutants, nitrogen, and phosphorus contained in animal manure were investigated using a laboratory scale single reactor. The characteristics of used livestock manure were $36,894{\pm}5,024mg\;TCOD/L$, $22,031{\pm}2,018mg\;SCOD/L$, $4,150{\pm}35mg\;NH_4-N/L$, and $659{\pm}113mg\;PO_4-P/L$. It was confirmed that the amount of organic pollutants, nitrogen, and phosphorus removal was increased by the use of oxygen rather than air as the gas supplied with the microbubble, and by input of larger oxygen amount. When the oxygen was fed with 600 mL flow rate per minute, TCOD and phosphorus removal were 2.5 times and 5.6 times higher than those of air supplied. As the microbubble-oxygen reaction time was longer, the removal rate of nutrients increased gradually. The removal rates of ammonium and phosphorus reach to $41.03{\pm}0.20%$ and $65.49{\pm}1.39%$, respectively, after 24 hours. When the coagulation treatment method was applied to increase phosphorus removal rate from the effluent of microbubble-oxygen treatment, the phosphorus was removed up to 92.7%. However, the removal rate of organic pollutants (TCOD) was as small as $28.7{\pm}0.2%$ within the first 6 hours, and then the negligible removal of TCOD was recorded. This study suggests that microbubble-oxygen can be applied not only livestock manure but also aeration tank of various wastewater treatment plant, which can reduce the load on the associated unit process and produce stable high-quality effluent.

마이크로버블-산소를 이용한 물리 화학적인 방법에 의해 가축분뇨에 포함된 유기오염물질과 질소, 인 제거에 효과를 실험실 규모의 단일 반응기를 이용하여 알아보았다. 사용한 가축분뇨의 성상은 TCOD $36,894{\pm}5,024mg/L$, SCOD $22,031{\pm}2,018mg/L$, 암모니아성질소 $4,150{\pm}35mg/L$, 그리고 인산염인 $659{\pm}113mg/L$로 고농도의 유기오염물질과 영양염류를 포함하였다. 마이크로버블과 함께 사용한 기체로 공기를 사용하였을 때 보다 산소를 사용하였을 때, 그리고 산소의 공급량이 많았을 때 유기오염물질, 질소, 인 제거량이 증가하였다. 산소를 분당 600 mL 사용하였을 때 공기를 사용했을 때와 비교하면 TCOD 제거율은 2.5배, 인은 약 5.6배 높았다. 또한 반응 시간이 길수록 영양염류의 제거율은 점진적으로 증가하여, 암모니아성질소와 인 제거는 각각 $41.03{\pm}0.20%$$65.49{\pm}1.39%$까지 제거되었다. 인 제거율을 증가시키기 위해 마이크로버블 적용 한 후 유출수를 응집침전을 시켰을 때, 인은 유입된 인 농도 대비 최대 92.7%까지 제거되는 것이 확인되었다. 그러나 유기오염물질(TCOD) 제거는 초기 6시간 이내에 $28.7{\pm}0.2%$까지 제거되었으나 더 이상 제거되지 않았다. 이 연구 결과 마이크로버블-산소를 가축분뇨 뿐만 아니라 다양한 하 폐수처리장의 포기조에 적용하면 연계된 단위 공정에 부하를 줄일 수 있으며 또한 고품위의 안정적인 유출수를 생산할 수 있는 방법으로 제시할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Grant : 마이크로버블/촉매 방식이용 가축 분뇨 처리 시스템의 미활용에너지 활용 기술

Supported by : 농촌진흥청

References

  1. Lee, S.-H., Kang, H.-W., Lee, S.-H., Kwon, J.-H. and Jung, K-J., "Study on phosphorus removal in the secondary effluent by flotation using microbubble liquid film system," J. Korea Soc. Environ. Eng., 34(1), 42-48(2012). https://doi.org/10.4491/KSEE.2012.34.1.042
  2. Jang, J. K., Sung, J. H., Kang, Y. K. and Kim, Y. H., The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater, J. Korea Soc. Environ. Eng., 37(10), 578-582(2015). https://doi.org/10.4491/KSEE.2015.37.10.578
  3. Shin, H. S. and Jun, H.-B., "Removal characteristics for nitrogen and phosphorus," Proc. Korean Soc. Civil Eng., pp. 561-564(1990).
  4. Park, W.-C., Lee, M.-A. and Sung, I.-W., "Phosphorus removal from advanced wastewater treatment process using PAC," J. Korea Soc. Environ. Eng., 36(2), 96-102(2014). https://doi.org/10.4491/KSEE.2014.36.2.96
  5. Lee, E. S. and Choi, C. S., " Technical trend and developmental direction of biological phosphate removal," Korean Ind. Chem. News, 14(5), 30-37(2011).
  6. Jeong, K.-H., Kim, J.-K., Khan, M. A., Han, D.-W. and Kwag, J.-H., "A study on the characteristics of livestock manure treatment facility in korea," J. KORRA, 22(4), 28-44(2014).
  7. Kim, M.-S. and Kwak, D.-H., "Effect of livestock liquid manurer released at a rice field on quality of soil and water in the saemangeum watershed," J. Korean Soc. Water Wastewater, 30(1), 19-31(2016). https://doi.org/10.11001/jksww.2016.30.1.019
  8. Shin, E. B., Choi, Y. S., Lee, and Y. D., "Removal of nitrogen and phosphorus from domestic wastewater by a single reactor," J. Korea Soc. Civil Eng., 15(5), 1461-1471(1995).
  9. Kim, K. S. and Cho, K. M., "Comparison of nitrogen and phosphorus removal characteristics of biological nutrient removal processes," Proc. J. Korea Soc. Environ. Eng., 12, 79-81(1997).
  10. Yeo, S.-M. and Lee, Y.-O., "Changes of the bacterial community structure depending on C : N : P ratio for biological phosphate removal, Proc. J. Korea Soc. Environ. Eng., pp. 929-934(2005).
  11. Agarwal, A., Ng, W. J. and Liu, Y., " Principle and applications of microbubbles and nanobubble technology for water treatment," Chemosphere, 84, 1175-1180(2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  12. Cho, D.-H., Kim, D.-E., Park, J.-W., Sung, G.-C. and Kwon, Y-S., "A study on the behavior micro-nano bubble for concentration oxygen stabilization techniques," Proc. The Korea Inst. Electrical Eng., pp. 1329-1330(2010).
  13. Cha, H.-S., "Present state and future prospect for microbubble technology," Bullet. Food Technol., 22(3), 544-552(2009).
  14. Takahashi, M., Chiba, K. and Li, P., "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus," J. Phys. Chem. B., 111, 1343-1347(2007). https://doi.org/10.1021/jp0669254
  15. Jang, J. K., Kim, M. Y., Sung, J. H., Chang, I. S., Kim, T. Y., Kim, H. W., Kang, Y. K. and Kim, Y. H., "Effect of the application of microbubbles and/or catalyst on the sludge reduction and organic matter of livestock wastewater," J. Korea Soc. Environ. Eng., 37(10), 558-562(2015). https://doi.org/10.4491/KSEE.2015.37.10.558
  16. Hwang, E.-J. and Cheon, H.-C., "High-rate phosphorous removal by PAC (Poly Aluminum Chloride) coaguration of $A_2O$ Effluent," J. Korea Soc. Environ. Eng., 31(9), 673-678(2009).