DOI QR코드

DOI QR Code

Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation

촉매 오존화 공정에서 메틸오렌지 제거에 미치는 운전변수의 영향

  • Lee, Myoung-Eun (Department of Urban System Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Kim, Ji-Eun (Department of Environmental Engineering, GNTECH) ;
  • Chung, Jae Woo (Department of Environmental Engineering, GNTECH)
  • 이명은 (경남과학기술대학교 도시시스템공학과) ;
  • 김지은 (경남과학기술대학교 환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과)
  • Received : 2017.05.11
  • Accepted : 2017.07.14
  • Published : 2017.07.31

Abstract

Removal characteristics of methyl orange and their dependence on operating parameters in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting methyl orange degradation. As the carbon dose increases, the pseudo-first order rate constants of methyl orange degradation increased, resulting in the fast removal of methyl orange. The increase of gaseous ozone concentration enhanced the mass transfer to the aqueous solution, therefore, promoted the methyl orange removal. The methyl orange degradation was not significantly affected by the change of pH in the range of 5~12, and TOC removal was negligibly affected by the variation of pH over 7. The results indicate that the catalytic ozonation can be considered as an effective dye treatment technology.

촉매오존화 공정에 의한 메틸오렌지 제거특성과 그에 미치는 운전변수의 영향에 관한 회분식 실험과 동력학적 연구를 수행하였다. 활성탄은 오존의 자가분해를 촉진시켜 $OH{\cdot}$를 발생시키므로 메틸오렌지 분해속도를 증가시키는 것으로 나타났다. 활성탄의 투입량이 증가함에 따라 메틸오렌지 분해반응의 속도상수가 증가하는 것으로 나타났다. 가스상 오존농도 증가는 수용액으로의 물질전달을 증가시켜 메틸오렌지 분해반응의 속도를 증가시키는 것으로 나타났다. 메틸오렌지 제거반응은 실험된 5~12 범위에서, TOC 제거는 7 이상의 pH에서 큰 영향을 미치지 않는 것으로 나타났다. 이러한 결과는 촉매오존화공정이 효과적인 염료처리 기술로서 고려될 수 있음을 보여준다.

Keywords

Acknowledgement

Supported by : 경남과학기술대학교

References

  1. Kim, H., Lee, M. E., Kang, S. and Chung, J. W., "Thermodynamic analysis of phenol adsorption by powdered activated carbon," J. Korean Soc. Environ. Eng., 35(3), 220-225(2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  2. Lee, H.-D., Kim, J.-O. and Chung, J.-W., "Degradation of methyl orange by pulsed corona discharge process in water," Desalination and Water Treat., 53(10), 2767-2773(2015). https://doi.org/10.1080/19443994.2014.931526
  3. Pagga, U. and Brown, D., "The degradation of dyestuffs: part II behaviour of dyestuffs in aerobic biodegradation tests," Chemosphere, 15(4), 479-491(1986). https://doi.org/10.1016/0045-6535(86)90542-4
  4. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P. and Li, N., "Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers," Chem. Eng. J., 157(2-3), 348-356(2010). https://doi.org/10.1016/j.cej.2009.11.013
  5. Chun, H., Yizhong, W. and Hongxiao, T., "Degradation of phenol aqueous solution by photocatalysis or direct photolysis," Chemosphere, 41(8), 1205-1209(2000). https://doi.org/10.1016/S0045-6535(99)00539-1
  6. Ince, N. H. and Gonenc, D. T., "Treatability of textile azo dye by $UV/H_2O_2$," Environ. Technol., 18(2), 179-185(1997). https://doi.org/10.1080/09593330.1997.9618484
  7. Kang, S. F. and Chang, H. M., "Coagulation of textile secondary effluents with fenton's reagent," Water Sci. Technol., 36(12), 215-222(1997). https://doi.org/10.1016/S0273-1223(97)00707-5
  8. Jans, U. and Horigne, J., "Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH radical," Ozone Sci. & Eng., 20(1), 67-87(1998). https://doi.org/10.1080/01919519808547291
  9. Zhang, J., Lee, K. H., Cuic, L. and Jeong, T. S., "Degradation of methylene blue in aqueous solution by ozone-based process," J. Ind. and Eng. Chem., 15(2), 185-189(2009). https://doi.org/10.1016/j.jiec.2008.09.014
  10. Song, S. J,, Oh, B. S., Kim, K. S., Na, S. J., Lee, E. T. and Kang, J. W., "A study on the advanced oxidation process by catalytic ozonation with granular activated carbon," J. Korean Soc. Environ. Eng., 26(1), 52-57(2004).
  11. Kim, H., Moon, J.-H. and Chung, J. W., "Phenol removal by ozone-activated carbon hybrid process," J. Korean Soc. Environ. Eng., 36(5), 311-316(2014). https://doi.org/10.4491/KSEE.2014.36.5.311
  12. Lei, L., Gu, L., Zhang, X. and Su, Y., "Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon," Appl. Catal. A: Gen., 327(2), 287-294(2007). https://doi.org/10.1016/j.apcata.2007.05.027
  13. Dehoulia, H., Chedeville, O., Cagnon, B., Caquereta, V. and Portea, C., "Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process," Desalination, 254(1-3), 12-16(2010). https://doi.org/10.1016/j.desal.2009.12.021
  14. Oliveira, T.F., Chedeville, O., Cagnon, B. and Fauduet, H., "Degradation kinetic of DEP in water by ozone/activated carbon process: Influence of pH," Desalination, 269(1-3), 271-275(2011). https://doi.org/10.1016/j.desal.2010.11.013
  15. Rivas, F. J., Beltran, F., Gimeno, O., Acedo, B. and Carvalho, F., "Stabilized leachates: Ozone-activated carbon treatment and kinetics," Water Res., 37(20), 4823-4834(2003). https://doi.org/10.1016/j.watres.2003.08.007
  16. Poloa, M. S., Gunten, U. V. and Utrilla, J.., "Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters," Water Res., 39(14), 3189-3198(2005). https://doi.org/10.1016/j.watres.2005.05.026
  17. Utrilla, J. R., Diaz, J. M., Polo, M. S., Garcia, F. M. A. and Toledo, I. B., "Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on $O_3$ and $O_3/H_2O_2$," Water Res., 40(8), 1717-1725(2006). https://doi.org/10.1016/j.watres.2006.02.015
  18. Polo, M. S., Utrilla, J. R., Joya, G. P., Garcia, M. A. F. and Toledo, I. B., "Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system," Water Res., 42(15) 4163-4171(2008). https://doi.org/10.1016/j.watres.2008.05.034
  19. Oliveira, T. F., Chedeville, O., Fauduet, H. and Cagnon, B., "Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties," Desalination, 276(1-3), 359-365(2011). https://doi.org/10.1016/j.desal.2011.03.084
  20. Valdes, H. and Zaror, C. A., "Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach," Chemosphere, 65(7), 1134-1136(2006).
  21. Moon, J. H., "The catalytic effect of the ozone/CNT process using para-chlorobenzoic acid," Department of Environmental Engineering, Graduate School Yonsei University(2013).
  22. Alvarez, P. M., Garcia-Araya, J. F., Beltrana, F. J., Giraldez, I., Jaramillo, J. and Gomez-Serrano, V., "The influence of various factors on aqueous ozone decomposition by granular activated carbon and the development of mechanistic approach," Carbon, 44(14), 3102-3112(2006). https://doi.org/10.1016/j.carbon.2006.03.016
  23. Sanchez-Polo, M. and Rivera-Utrill, J., "Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1, 3, 6-naphthalenetrisulphonic acid with ozone," Carbon, 41(2), 303-307(2003). https://doi.org/10.1016/S0008-6223(02)00288-9
  24. Chung, J. W., Park, J.-W. and Lee, C.-S., "Effects of operating parameters on dissolved ozone and phenol degradation in ozone contact reactor," J. Korean Soc. Environ Eng., 32(3), 243-249(2010).
  25. Du, L., Wu, J., Qin, S. and Hu, C., "Degradation mechanism of methyl orange by electrochemical process on RuOx-PdO/Ti electrode," Water Sci. and Technol., 63(7), 1539-1545(2011). https://doi.org/10.2166/wst.2011.414