DOI QR코드

DOI QR Code

Removal Characteristic of Soluble Cs in Water Using Natural Adsorbent and High Basicity Coagulant Poly Aluminium Chloride

천연광물 흡착제 및 고염기도 PAC를 이용한 용존성 Cs의 처리특성

  • Kim, Bokseong (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Youngsuk (Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Yoonsuhn (Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Sungwon (Korea Institute of Civil Engineering and Building Technology) ;
  • Oh, Daemin (Korea Institute of Civil Engineering and Building Technology) ;
  • Chae, Hojun (E-Young Chemical Co., Ltd.)
  • Received : 2017.01.16
  • Accepted : 2017.06.05
  • Published : 2017.07.31

Abstract

This study investigated removal characteristic of soluble Cs in water by RPT (Radioactivity pollutant treatment) with coagulation and sedimentation. The RPT conducted with various chemical and natural coagulants to remove the soluble Cs which consisted pre-adsorption, Sedimentation and post-adsorption. Natural absorbent included Illite and zeolite. Especially, Illite divided LPI (Large Particle Illite) and SPI (Small Particle Illite) by grain size. Also, Chemical coagulants included high basicity PAC (poly aluminum chloride). The adsorbent had a plate structure mainly composed of quartz, albite and muscovite. The surface area were $4.201m^2/g$ and $4.227m^2/g$ and the particle sizes were $197.4-840.9{\mu}m$ and $3.28-53.57{\mu}m$, respectively. The adsorption efficiency of the natural Illite was 82.8% for LPI and 85.6% for SPI. The removal efficiency of turbidity, which was an indirect indicator of adsorbent recovery, was 96.4% and 98.3%, respectively.

응집 침전기술인 방사능 오염물질의 처리장치의 용존성 Cs 처리특성을 평가하였다. 방사능 오염물질 처리장치는 전흡착부, 고형물침전부, 후흡착부로 구성하였다. 흡착제는 천연광물 일라이트를 입자크기에 따라 LPI (Large Particle Illite), SPI (Small Particle Illite)로 구분하여 사용하였고, 응집제는 고염기도 PAC (poly aluminum chloride)을 사용하였다. 흡착제는 판상구조형태로 주로 석영, 조장석, 백운모로 구성되었으며, LPI, SPI의 Surface area는 각각 $4.201m^2/g$, $4.227m^2/g$으로 나타났고 입자크기는 각각 $197.4-840.9{\mu}m$, $3.28-53.57{\mu}m$로 나타났다. 천연광물인 일라이트의 흡착효율은 LPI는 82.8%, SPI는 85.6%로 나타났고 흡착제 회수에 대한 간접적인 지표인 탁도의 제거율은 96.4%, 98.3%로 나타났다.

Keywords

Acknowledgement

Supported by : 국가과학기술연구회

References

  1. Oh, D. M., Kim, Y. S. and Kang, S. W., "A Study on the Estimate Method for Radioactive Materials Runoff by Fallout in Basin using Grid-Catchment Integrated Environmental Modeling System," KSWW & KSWE Conference, pp. 259-260(2016).
  2. Bolsunovsky, A. and Dementyev, D., "Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima nuclear accident," J. Environ. Rad., 102(11), 1062-1064(2011). https://doi.org/10.1016/j.jenvrad.2011.06.007
  3. Yasunari, T. J., Stohl, A., Hayano, S. R., Burkart, F. J., Eckhardt, S. and Yasunari, T., "Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident," Proc. Nat. Acad. Sci., 108(49), 19530-19534(2011). https://doi.org/10.1073/pnas.1112058108
  4. Delchet, C., Tokarev, A., Dumail, X., Toquer, G., Barre, Y., Guerin, C., Larionova, J. and Grandjean, A. "Extraction of radioactive cesium using innovative functionalized porous materials," Rsc Adv., 2(13), 5707-5716(2012). https://doi.org/10.1039/c2ra00012a
  5. Bibler, J. P. and Wallace, R. M. "Testing a new cesium-specific ion exchange resin for decontamination of alkaline high-activity waste," Department of Energy, United States, pp. 747-751(1989).
  6. Vincenzo, T., "Proton and methanol transport in poly (perfluorosulfonate) membranes containing $Cs^+$ and $H^+$ cations," J. Electrochem. Soc., 145(11), 3798-3801(1998). https://doi.org/10.1149/1.1838876
  7. Chmielewski, A. G., Harasimowicz, M., Tyminski, B. and Zakrzewska-Trznadel, G., "Concentration of low-and medium-level radioactive wastes with three-stage reverse osmosis pilot plant," Sep. Sci. and Technol., 36(5&6), 1117-1127(2001). https://doi.org/10.1081/SS-100103640
  8. Matsunaga, T., Amano, H. and Yanase, N., "Discharge of dissolved and particulate 137 Cs in the Kuji River, Japan," Appl. Geochem., 6(2), 159-167(1991). https://doi.org/10.1016/0883-2927(91)90026-L
  9. Kogure, T., Morimoto, K., Tamura, K., Sato, H. and Yamagishi, A., "XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay," Chem. Lett., 41(4), 380-382(2012). https://doi.org/10.1246/cl.2012.380
  10. Rajec, P., Matel, L, Orechovska, J, Sucha, J. and Novak, I., "Sorption of radionuclides on inorganic sorbents," J. Radioanalytical and Nuclear Chem., 208(2), 477-486(1996). https://doi.org/10.1007/BF02040065
  11. Nazeer, A. B., Francis, G. D., David, O. M. and John, P. M., "Method for reducing automotive NOx emissions in lean burn internal combustion engine exhaust using a transition metal-containing zeolite catalyst which is in-situ crystallized," U.S. Patent No. 5154322A(1993).
  12. Sawhney, B. L., "Potassium and cesium ion selectivity in relation to clay mineral structure," Clays and Clay Minerals, 18(1), 47-52(1970). https://doi.org/10.1346/CCMN.1970.0180106
  13. David, W. E., James, J. A. and Roy, A. C., "Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments," Geochim. et Cosmochim. Acta, 47.6(6), 1041-1049(1983). https://doi.org/10.1016/0016-7037(83)90234-X
  14. Chakrit, T., Pakorn, O., Pramuan, T. and Paiboon, S., "Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment," J. Nanoparticle Res., 15(6), 1-10(2013).
  15. Chen, G. R., Chang, Y. R., Liu, X., Tohru, K. H. T., Parajuli, D., Kawasaki, T., Kawatsu, Y., Kobayashi, T., Chen, M. L., Lo, Y. K., Lei, Z. and Lee, D. J., "Cesium removal from drinking water using Prussian blue adsorption followed by anion exchange process," Sep. and Purific. Technol., 172, 147-151(2017). https://doi.org/10.1016/j.seppur.2016.07.055
  16. Chen, G. R., Chang, Y. R., Liu, X., Tohru, K. H. T., Akiko, K., A., Parajuli, D., Takasaki, M., Yoshino, K., Chen, M. L., Lo, Y. K., Lei, Z. and Lee, D. J., "Prussian blue (PB) granules for cesium (Cs) removal from drinking water," Sep. and Purific. Technol., 143, 146-151(2015). https://doi.org/10.1016/j.seppur.2015.01.040
  17. Chang, H. L. and Shih, W. H., "A general method for the conversion of fly ash into zeolites as ion exchangers for cesium," Ind. & Eng. Chem. Res., 37(1), 71-78(1998). https://doi.org/10.1021/ie970362o
  18. Park, N. B., Lee, B., Tian, D. J., Lee, Y. J. and Jun, H. B., "The Effects of pH and Dosages According to Qualities of Raw waters and Basicity of Coagulation," J. Korean Soc. Water and Wastewater, 24(5), 581-593(2010).

Cited by

  1. Synthesis of Adsorbent Fixed with Prussian Blue Based by Illite and Adsorption of Soluble Radioactive Cesium (137Cs) vol.41, pp.1, 2019, https://doi.org/10.4491/KSEE.2019.41.1.24