DOI QR코드

DOI QR Code

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)

Mn4+ 도핑된 형광체, Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)의 Color Tuning

  • Park, Woon Bae (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • 박운배 (세종대학교 나노신소재공학과)
  • Received : 2017.04.04
  • Accepted : 2017.05.04
  • Published : 2017.08.20

Abstract

Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.

백색 LED 기술이 발달함에 따라 적색 형광체는 산업 및 학계에서 점차 중요성이 커지고 있으며, 시장에서 수요는 꾸준히 증가했다. 적색 형광체는 고효율 및 고연색의 LED 조명에 사용된다. 그러나 $Eu^{2+}$ 활성제를 사용한 적색 형광체는 4f-5d 전이로 발생하는 녹색 또는 황색 스펙트럼 영역에서의 강한 재흡수로 인해 백색 LED 칩에서 색상 변경 및 발광 강도의 저하를 유발했다. 이러한 단점이 없고 연색성 지수(CRI)를 더 향상할 수 있는 $Mn^{4+}$ 도핑된 형광체가 현재 매우 중요하다. 그러나 $Mn^{4+}$ 도핑된 형광체는 $^2E_g{\rightarrow}^4A_2$ 전이로 인하여 발광 파장이 모체에 따라 결정된다는 단점이 있다. 본 연구는 동일구조의 $SrGe_4O_9$$BaGe_4O_9$ 모체를 합성하여 $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ (x = 0, 0.25, 0.5, 0.75 and 1)를 얻었다. 이로 인해 LED 기술의 다양한 색상 조정이 가능해졌다.

Keywords

References

  1. Zhu, H.; Lin, C. C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R-S.; Chen, X. Nat. Commun. 2014, 5, 4312. https://doi.org/10.1038/ncomms5312
  2. Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.; Henss, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Nat. Mater. 2014, 13, 891. https://doi.org/10.1038/nmat4012
  3. Daicho, H.; Iwasaki, T.; Enomoto, K.; Sasaki, Y.; Maeno, Y.; Shinomiya, Y.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Sawa, H.; Matsuishi, S.; Hosono, H. Nat. Commun. 2012, 3, 1132. https://doi.org/10.1038/ncomms2138
  4. Chen, W. T.; Sheu, H. S.; Liu, R. S.; Attfield, J. P. J. Am. Chem. Soc. 2012, 134, 8022. https://doi.org/10.1021/ja301593z
  5. Im, W. B.; George, N.; Kurzman, J.; Brinkley, S.; Mikhailovsky, A.; Hu, J.; Chmelka, B. F.; DenBaars, S. P.; Seshadri, R. Adv. Mater. 2011, 23, 2300. https://doi.org/10.1002/adma.201003640
  6. Shang, M.; Li, C.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372. https://doi.org/10.1039/C3CS60314H
  7. Recommendations ITU-R BT.2020-2, Parameter values for ultra-high definition television systems for production and international programme exchange, International Telecommunication Union, 2015.
  8. Trupke, T.; Green, M. A.; Wurfel, P. J. Appl. Phys. 2002, 92, 1668. https://doi.org/10.1063/1.1492021
  9. Van der Ende, B. M.; Aarts, L.; Meijerink, A. Adv. Mater. 2009, 21, 3073. https://doi.org/10.1002/adma.200802220
  10. Xie, R.-J.; Hirosaki, N.; Suehiro, T.; Xu, F.-F.; Mitomo, M. A. Chem. Mater. 2006, 18, 5578. https://doi.org/10.1021/cm061010n
  11. Brik, M. G.; Camerdello, S. J.; Srivastava, A. M. ECS J. Solid State Sci. Technol. 2015, 4, R39.
  12. Wang, B.; Lin, H.; Xu, J.; Chen, H.; Wang, Y. ACS Appl. Mater. Interfaces 2014, 6, 22905. https://doi.org/10.1021/am507316b
  13. Brik, M. G.; Srivastava, A. M.; J. Lumin. 2013, 133, 69. https://doi.org/10.1016/j.jlumin.2011.08.047
  14. Liang, S.; Shang, M.; Lian, H.; Li, K.; Zhang, Y.; Lin, J.; J. Mater. Chem. 2016, 4, 6409.
  15. Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 47, 558. https://doi.org/10.1103/PhysRevB.47.558
  16. Kresse, G.; Hafner, J. Phys. Rev. B. 1994, 49, 14251. https://doi.org/10.1103/PhysRevB.49.14251
  17. Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. https://doi.org/10.1016/0927-0256(96)00008-0
  18. Kresse, G.; Furthmuller, J. J. Phys. Rev. B. 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169
  19. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  20. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B. 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188
  21. Blochl, P. E. Phys. Rev. B. 1994, 50, 17953. https://doi.org/10.1103/PhysRevB.50.17953
  22. Kresse, G.; Joubert, D. Phys. Rev. B. 1999, 59, 1758.
  23. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. https://doi.org/10.1063/1.1564060
  24. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 224106. https://doi.org/10.1063/1.2404663
  25. Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 074106. https://doi.org/10.1063/1.2244560