이산화바나듐 마이크로/나노선의 합성, 특성 및 응용

  • 윤영훈 (경북대학교 신소재공학부) ;
  • 이상욱 (경북대학교 신소재공학부)
  • 발행 : 2017.06.30

초록

키워드

참고문헌

  1. Liu, G.H., X.Y. Deng, and R. Wen, "Electronic and optical properties of monoclinic and rutile vanadium dioxide," J. Mater. Sci., 45 [12] 3270-3275 (2010). https://doi.org/10.1007/s10853-010-4338-2
  2. Mai, L.Q., B. Hu, T. Hu, W. Chen, and E.D. Gu, "Electrical property of Mo-doped VO2 nanowire array film by melting- quenching sol-gel method," J. Phys. Chem. B, 110 [39] 19083-19086 (2006). https://doi.org/10.1021/jp0642701
  3. Horrocks, G.A., S. Singh, M.F. Likely, G. Sambandamurthy, and S. Banerjee, "Scalable Hydrothermal Synthesis of Free-Standing $VO_2$ Nanowires in the M1 Phase," Acs Appl. Mater. Inter., 6 [18] 15726-15732 (2014). https://doi.org/10.1021/am504372t
  4. Whittaker, L., H.S. Zhang, and S. Banerjee, "$VO_2$ nanosheets exhibiting a well-defined metal-insulator phase transition," J. Mater. Chem., 19 [19] 2968-2974 (2009). https://doi.org/10.1039/b823332b
  5. Yin, H.H., J. Ni, W.T. Jiang, Z.L. Zhang, and K. Yu, "Synthesis, field emission and humidity sensing characteristics of monoclinic $VO_2$ nanostructures," Physica E, 43 [9] 1720-1725 (2011). https://doi.org/10.1016/j.physe.2011.05.030
  6. Whittaker, L., C. Jaye, Z.G. Fu, D.A. Fischer, and S. Banerjee, "Depressed Phase Transition in Solution-Grown $VO_2$ Nanostructures," J. Am. Chem. Soc., 131 [25] 8884-8894 (2009). https://doi.org/10.1021/ja902054w
  7. Cao, J., E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossmanan, and J. Wu, "Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams," Nature Nanotechnol., 4 [11] 732-737 (2009). https://doi.org/10.1038/nnano.2009.266
  8. Lee, S., C. Cheng, H. Guo, K. Hippalgaonkar, K. Wang, J. Suh, K. Liu, and J.Q. Wu, "Axially Engineered Metal-Insulator Phase Transition by Graded Doping $VO_2$ Nanowires," J. Am. Chem. Soc., 135 [12] 4850-4855 (2013). https://doi.org/10.1021/ja400658u
  9. Strelcov, E., A.V. Davydov, U. Lanke, C. Watts, and A. Kolmakov, "In Situ Monitoring of the Growth, Intermediate Phase Transformations and Templating of Single Crystal $VO_2$ Nanowires and Nanoplatelets," Acs Nano, 5 [4] 3373-3384 (2011). https://doi.org/10.1021/nn2007089
  10. Kim, M.H., B. Lee, S. Lee, C. Larson, J.M. Baik, C.T. Yavuz, S. Seifert, S. Vajda, R.E. Winans, M. Moskovits, G.D. Stucky, and A.M. Wodtke, "Growth of Metal Oxide Nanowires from Supercooled Liquid Nanodroplets," Nano Lett., 9 [12] 4138-4146 (2009). https://doi.org/10.1021/nl902357q
  11. Cheng, Y., T.L. Wong, K.M. Ho, and N. Wang, "The structure and growth mechanism of $VO_2$ nanowires," J. Cryst. Growth, 311 [6] 1571-1575 (2009). https://doi.org/10.1016/j.jcrysgro.2009.01.002
  12. Kosuge, K., "The phase diagram and phase transition of the $V_2O_3-V_2O_5$, system," J. Phys. Chem. Solids, 28 1613-1621 (1967). https://doi.org/10.1016/0022-3697(67)90293-4
  13. Wriedt, H.A., "The O-V (Oxygen-Vanadium) system," Bull. Alloy Phase Diagrams, 10 [3] 271-277 (1989). https://doi.org/10.1007/BF02877512
  14. Cheng, C., K. Liu, B. Xiang, J. Suh, and J.Q. Wu, "Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation," Appl. Phys. Lett., 100 [10] 4 (2012).
  15. Zhang, S.X., I.S. Kim, and L.J. Lauhon, "Stoichiometry Engineering of Monoclinic to Rutile Phase Transition in Suspended Single Crystalline Vanadium Dioxide Nanobeams," Nano Lett., 11 [4] 1443-1447 (2011). https://doi.org/10.1021/nl103925m
  16. Eyert, V., "The metal-insulator transitions of $VO_2$: a band theoretical approach," Ann. Der Physik, 11 [9] 650-702 (2002). https://doi.org/10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K
  17. M. Marezio, D.B.M., J. P. Remeika, and P. D. Dernier, "Structural Aspects of the Metal-Insulator Transitions in Cr-Doped $VO_2$," Phys. Rev. B, 5 2541-2551 (1972).
  18. Rakotoniaina, J.C., R. Mokranitamellin, J.R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin, "THE THERMOCHROMIC VANADIUM DIOXIDE .1. ROLE OF STRESSES AND SUBSTITUTION ON SWITCHING PROPERTIES,". J. Solid State Chem., 103 [1] 81-94 (1993). https://doi.org/10.1006/jssc.1993.1081
  19. Atkin, J.M., S. Berweger, E.K. Chavez, M.B. Raschke, J.B. Cao, W. Fan, and J.Q. Wu, "Strain and temperature dependence of the insulating phases of $VO_2$ near the metal-insulator transition," Phys. Rev. B, 85 [2] 4 (2012).
  20. Hu, B., Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V.V. Tsukruk, and Z.L. Wang, "External-Strain Induced Insulating Phase Transition in $VO_2$ Nanobeam and Its Application as Flexible Strain Sensor," Adv. Mater., 22 [45] 5134- (2010). https://doi.org/10.1002/adma.201002868
  21. Wall, S., D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund, J. Stahler, and M. Wolf, "Ultrafast changes in lattice symmetry probed by coherent phonons," Nat. Comm., 3 6 (2012).
  22. Liu, K., C. Cheng, Z.T. Cheng, K.V. Wang, R. Ramesh, and J.Q. Wu, "Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs," Nano Lett., 12 [12] 6302-6308 (2012). https://doi.org/10.1021/nl303405g
  23. Wood, R.J., E. Steltz, and R.S. Fearing, "Optimal energy density piezoelectric bending actuators," Sensor. Actuat. A-Phys., 119 [2] 476-488 (2005). https://doi.org/10.1016/j.sna.2004.10.024
  24. Mirfakhrai, T., J.D.W. Madden, and R.H. Baughman, "Polymer artificial muscles," Mater. Today, 10 [4] 30-38 (2007). https://doi.org/10.1016/S1369-7021(07)70048-2
  25. Liu, K., C. Cheng, J. Suh, R. Tang-Kong, D.Y. Fu, S. Lee, J. Zhou, L.O. Chua, and J.Q. Wu, Powerful, "Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition," Adv. Mater., 26 [11] 1746-1750 (2014). https://doi.org/10.1002/adma.201304064
  26. Goodenough, J.B., "The two components of the crystallographic transition in $VO_2$," J. Solid State Chem., 3 [4] 490-500 (1971). https://doi.org/10.1016/0022-4596(71)90091-0
  27. Aetukuri, N.B., A.X. Gray, M. Drouard, M. Cossale, L. Gao, A.H. Reid, R. Kukreja, H. Ohldag, C.A. Jenkins, E. Arenholz, K.P. Roche, H.A. Durr, M.G. Samant, and S.S.P. Parkin, "Control of the metalinsulator transition in vanadium dioxide by modifying orbital occupancy," Nat. Phys., 9 [10] 661-666 (2013). https://doi.org/10.1038/nphys2733
  28. Guggenheim, C.N.B.a.H.J., "Electronic Properties of $VO_2$ near the Semiconductor-Metal Transition," Phys. Rev., 185 [3] 1022-1033 (1969). https://doi.org/10.1103/PhysRev.185.1022
  29. Liu, K., D.Y. Fu, J.B. Cao, J. Suh, K.X. Wang, C. Cheng, D.F. Ogletree, H. Guo, S. Sengupta, A. Khan, C.W. Yeung, S. Salahuddin, M.M. Deshmukh, and J.Q. Wu, "Dense Electron System from Gate-Controlled Surface Metal-Insulator Transition," Nano Lett., 12 [12] 6272-6277 (2012). https://doi.org/10.1021/nl303379t
  30. Nakano, M., K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, "Collective bulk carrier delocalization driven by electrostatic surface charge accumulation," Nature, 487 [7408] 459-462 (2012). https://doi.org/10.1038/nature11296
  31. Gurvitch, M., S. Luryi, A. Polyakov, and A. Shabalov, "Nonhysteretic behavior inside the hysteresis loop of $VO_2$ and its possible application in infrared imaging," J. Appl. Phys., 106 [10] 15 (2009).
  32. Niklaus, F., "MEMS-Based Uncooled Infrared Bolometer Arrays : A Review," Proc. SPIE, 6836 68360D-1 (2007).
  33. V. N. Andreev, F. A. Chudnovskii, A. V. Petrov, and E.I. Terukov, "Thermal conductivity of $VO_2$, $V_3O_5$, and $V_2O_3$,". Phys. Status Solidi, A Appl. Res., 48 [2] K153-K156 (1978). https://doi.org/10.1002/pssa.2210480257
  34. Oh, D.W., C. Ko, S. Ramanathan, and D.G. Cahill, "Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film $VO_2$," Appl. Phys. Lett., 96 [15] 3 (2010).
  35. Lee, S., K. Hippalgaonkar, F. Yang, J.W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, and J.Q. Wu, "Anomalously low electronic thermal conductivity in metallic vanadium dioxide," Science, 355 [6323] 371 (2017). https://doi.org/10.1126/science.aag0410
  36. Zhu, J., K. Hippalgaonkar, S. Shen, K.V. Wang, Y. Abate, S. Lee, J.Q. Wu, X.B. Yin, A. Majumdar, and X. Zhang, "Temperature-Gated Thermal Rectifier for Active Heat Flow Control," Nano Lett., 14 [8] 4867-4872 (2014). https://doi.org/10.1021/nl502261m
  37. Yu, J.H., S.H. Nam, J.W. Lee, and J.H. Boo, "Enhanced Visible Transmittance of Thermochromic $VO_2$ Thin Films by $SiO_2$ Passivation Layer and Their Optical Characterization," Materials, 9 [7] 8 (2016).
  38. Li, S.Y., K. Namura, M. Suzuki, G.A. Niklasson, and C.G. Granqvist, "Thermochromic $VO_2$ nanorods made by sputter deposition: Growth conditions and optical modeling," J. Appl. Phys., 114 [3] 11 (2013).
  39. Gu, Q., A. Falk, J.Q. Wu, O.Y. Lian, and H. Park, "Current-driven phase oscillation and domain-wall propagation in $W_xV_1-xO_2$ nanobeams," Nano Lett., 7 [2] 363-366 (2007). https://doi.org/10.1021/nl0624768
  40. Batista, C., R.M. Ribeiro, and V. Teixeira, "Synthesis and characterization of $VO_2$-based thermochromic thin films for energy-efficient windows," Nanoscale Res. Lett., 6 7 (2011).
  41. Wu, Y.F., L.L. Fan, W.F. Huang, S.M. Chen, S. Chen, F.H. Chen, C.W. Zou, and Z.Y. Wu, "Depressed transition temperature of $W_xV_1-xO_2$: mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy," Phys. Chem. Chem. Phys., 16 [33] 17705-17714 (2014). https://doi.org/10.1039/C4CP01661K
  42. Yoon, J., H. Kim, X. Chen, N. Tamura, B.S. Mun, C. Park, and H. Ju, "Controlling the Temperature and Speed of the Phase Transition of $VO_2$ Microcrystals," Acs Appl. Mater. Inter., 8 [3] 2280-2286 (2016). https://doi.org/10.1021/acsami.5b11144
  43. Muraoka, Y. and Z. Hiroi, "Metal-insulator transition of $VO_2$ thin films grown on $TiO_2$ (001) and (110) substrates," Appl. Phys. Lett., 80 [4] 583-585 (2002). https://doi.org/10.1063/1.1446215
  44. Quackenbush, N.F., J.W. Tashman, J.A. Mundy, S. Sallis, H. Paik, R. Misra, J.A. Moyer, J.H. Guo, D.A. Fischer, J.C. Woicik, D.A. Muller, D.G. Schlom, and L.F.J. Piper, "Nature of the Metal Insulator Transition in Ultrathin Epitaxial Vanadium Dioxide," Nano Lett., 13 10 4857-4861 (2013). https://doi.org/10.1021/nl402716d
  45. Shibuya, K., J. Tsutsumi, T. Hasegawa, and A. Sawa, "Fabrication and Raman scattering study of epitaxial $VO_2$ films on $MgF_2$ (001) substrates," Appl. Phys. Lett., 103 [2] 4 (2013).
  46. Fan, L.L., S. Chen, Z.L. Luo, Q.H. Liu, Y.F. Wu, L. Song, D.X. Ji, P. Wang, W.S. Chu, C. Gao, C.W. Zou, and Z.Y. Wu, "Strain Dynamics of Ultrathin $VO_2$ Film Grown on $TiO_2$ (001) and the Associated Phase Transition Modulation," Nano Lett., 14 [7] 4036-4043 (2014). https://doi.org/10.1021/nl501480f