References
-
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, "Cubic
$AgPb_mSbTe_{2+m}$ : Bulk Thermoelectric Materials with High Figure of Merit," Science, 303 [5659] 818-21 (2004). https://doi.org/10.1126/science.1092963 - G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nature Mater., 7 [2] 105-14 (2008). https://doi.org/10.1038/nmat2090
- J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008). https://doi.org/10.1126/science.1159725
- Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics," Nature, 473 [7345] 66-9 (2011). https://doi.org/10.1038/nature09996
-
P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, "High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type
$Na_{1-x}Pb_mSb_yTe_{m+2}$ ," Angew. Chem. Int. Ed., 45 [23] 3835-39 (2006). https://doi.org/10.1002/anie.200600865 - G. K. H. Madsen and D. J. Singh, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities," Comput. Phys. Commun., 175 [1], 67-71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007
- P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001).
- G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Furthmuller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P. Giannozzi, et al, "QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials," J. of Phys.: Cond. Matter, 21 [39] 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally-Localized Wannier Functions Basis", Comp. Phys. Comm., 185 [1] 422-29 (2014). https://doi.org/10.1016/j.cpc.2013.09.015
- G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg (2001).
- M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, "Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations," Phys. Rev. B., 77 [16] 165119 (2008). https://doi.org/10.1103/PhysRevB.77.165119
- G Jeffrey and Tristan S. Ursell, "Thermoelectric Efficiency and Compatibility", Phys. Rev. Lett., 91 [14] 148301 (2003). https://doi.org/10.1103/PhysRevLett.91.148301
-
S. J. Youn and A. J. Freeman, "First-Principles Electronic Structure and its Relation to Thermoelectric Properties of
$Bi_2Te_3$ ," Phys. Rev. B., 63 [8] 851121 (2001). -
P. Larson, S. D. Mahanti, and M. G. Kanatzdis, "Electronic Structure and Transport of
$Bi_2Te_3$ and$BaBiTe_3$ ," Phys. Rev. B. 61 [12] 8162 (2000). https://doi.org/10.1103/PhysRevB.61.8162 - T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, "Transport Coefficients from First-Principles Calculations," Phys. Rev. B., 68 [12] 125210 (2003). https://doi.org/10.1103/PhysRevB.68.125210
- B. -L. Huang and M. Kaviany, "Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride," Phys. Rev. B., 77 [12] 125209 (2008). https://doi.org/10.1103/PhysRevB.77.125209
- S. Lee and P. von Allmen, "Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride," Appl. Phys. Lett., 88 [2] 022107 (2006). https://doi.org/10.1063/1.2162863
- S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide," J. Phys. Cond. Matter., 9 [2] 461 (1997). https://doi.org/10.1088/0953-8984/9/2/014
-
P. Larson, and W. R. L. Lambrecht, "Electronic Structure and Magnetism in
$Bi_2Te_3$ , Bi2Se3, and$Sb_2Te_3$ Doped with Transition Metals(Ti-Zn)," Phys. Rev. B., 78 [19] 195207 (2008). https://doi.org/10.1103/PhysRevB.78.195207 -
P. Larson, "Effect of
$p_{1/2}$ Corrections in the Electronic Structure of$Bi_2Te_3$ Compounds," Phys. Rev. B., 68 [15] 1551211 (2003). -
B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, "Electronic Structure and Transport Anisotropy of
$Bi_2Te_3$ and$Sb_2Te_3$ ," Phys. Rev. B, 84 [16] 165208 (2011). https://doi.org/10.1103/PhysRevB.84.165208 -
N. F. Hinsche, B. Yu. Yavorsky, I. Mertig, and P. Zahn, "Influence of Strain on Anisotropic Thermoelectric Transport in
$Bi_2Te_3$ and$Sb_2Te_3$ ," Phys. Rev. B., 84 [16] 165214 (2011). https://doi.org/10.1103/PhysRevB.84.165214 -
M. Kim, A. J. Freeman, and C. B. Geller, "Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics:
$Bi_2Te_3$ ," Phys. Rev. B. 72 [3] 035205 (2005). https://doi.org/10.1103/PhysRevB.72.035205 - P. Pecheur and G. Toussaint, "Electronic Structure and Bonding in Bismuth Telluride," Phys. Letters A, 135 [3] 223-26 (1989). https://doi.org/10.1016/0375-9601(89)90267-3
-
P. Pecheur and G. Toussaint, "Tight-binding Studies of Crystal Stability and Defects in
$Bi_2Te_3$ ," J. Phys. Chem. Solids., 55 [4] 327-38 (1994). https://doi.org/10.1016/0022-3697(94)90229-1 -
B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee, S. D. Park, and M. W. Oh, "Prediction of the Band Structures of
$Bi_2Te_3$ -related Binary and Sb/ Se-doped Ternary Thermoelectric Materials", J. Kor. Phys. Soc., 68 [1] 115-20 (2016). https://doi.org/10.3938/jkps.68.115 -
M. W. Oh, B. Ryu, J. E. Lee, S. J. Joo, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Electronic Structure and Seebeck coefficients of
$Bi_2Te_3$ ,$Sb_2Te_3$ , and$(Bi_{0.25}Te_{0.75})_2Te_3$ :A First-Principles Calculation Study," J. Nanoelec. Optoelec., 10 [3] 391-96 (2015). https://doi.org/10.1166/jno.2015.1756 -
S. Nakajima, "The Crystal Structure of
$Bi_2Te_{3-x}Se_x$ ," J. Phys. Chem. Solids., 24 [3] 479 (1963). https://doi.org/10.1016/0022-3697(63)90207-5 -
M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Antisite Defects in n-type
$Bi_2(Te,Se)_3$ :ExperimentalandTheoreticalStudies," J. Appl. Phys., 115 [13], 133706 (2014). https://doi.org/10.1063/1.4870818 - J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
-
G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer and J. V. Waszczak, "Large Electronic-Density Increase on Cooling a Layered Metal: Doped
$Bi_2Te_3$ ," Phys. Rev. B., 46 [3] 1553 (1992). https://doi.org/10.1103/PhysRevB.46.1553 -
T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, G. D. Mahan, "Thermoelectric Properties of
$Sb_2Te_3$ Under Pressure and Uniaxial Stress," Phys. Rev. B., 68 [8] 085201 (2003). https://doi.org/10.1103/PhysRevB.68.085201 - H. Scherrer and S. Scherrer, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe, CRC, Boca Raton, FL. (1995).
- H. J. Goldsmid, "The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride," Proc. Phys. Soc., 71 [4] 633 (1958). https://doi.org/10.1088/0370-1328/71/4/312
- Y. Kang, S. H. Jeon, Y. W. Son, Y. S. Lee, M. Ryu, S. Lee, S. Han, "Microscopic Origin of Universal Quasilinear Band Structures of Transparent Conducting Oxides", Phys. Rev. Lett. 108 196404 (2012). https://doi.org/10.1103/PhysRevLett.108.196404
- Ziman, J. M. Electrons and Phonons (Clarendon Press, Oxford, 1960).
- A. Bid, A. Bora, A and A. K. Raychaudhuri, "Temperature Dependence of the Resistance of Metallic Nanowires of Diameter >15 nm: Applicability of Bloch-Grüneisen Theorem," Phys. Rev. B, 74 [3] 035426 (2006). https://doi.org/10.1103/PhysRevB.74.035426
- J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, "Abnormal Drop in Electrical Resistivity with Impurity Doping of Single-Crystal Ag", Sci. Rep. 4 5450 (2014).
-
P. B. Allen, W. E. Pickett, and H. Krakauer, "Band-Theory Analysis of Anisotropic Transport in
$La_2CuO_4$ - Based Superconductors," Phys. Rev. B, 36 [7] 3926-29 (1987). - R. J. Mehta, et al., "Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping," Nano Lett., 12 [9] 4523-29 (2012). https://doi.org/10.1021/nl301639t
-
P. B. Allen, "Empirical Electron-Phonon
$\lambda$ Values from Resistivity of Cubic Metallic Elements," Phys. Rev. B, 36 [5] 2920-2923 (1987). https://doi.org/10.1103/PhysRevB.36.2920 - P. B. Allen, et al., "DC Transport in Metals," Phys. Rev. B, 34 [6] 4331-4333 (1986). https://doi.org/10.1103/PhysRevB.34.4331
- S. Y. Savrasov, and D. Y. Savrasov, "Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory," Phys. Rev. B, 54 [23] 16487-501 (1996). https://doi.org/10.1103/PhysRevB.54.16487
- G. P. Srivastava, Physics of Phonons (CRC, Boca Raton, FL, 1990).
- P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio Calculation of Phonon Dispersions in Semiconductors," Phys. Rev. B, 43 [9] 7231 (1991). https://doi.org/10.1103/PhysRevB.43.7231
- G. Deinzer, G. Birner, and D. Strauch, "Ab initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon," Phys. Rev. B, 67 [14] 144304 (2003). https://doi.org/10.1103/PhysRevB.67.144304
- D.A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," Appl. Phys. Lett., 91 [23] 231922 (2007). https://doi.org/10.1063/1.2822891
- K. Esfarjani, H.T. Stokes, "Method to Extract Anharmonic Force Constants from First Principles Calculations," Phys. Rev. B, 77 [14] 144112 (2008). https://doi.org/10.1103/PhysRevB.77.144112
- X. Tang and J. Dong, "Pressure Dependence of Harmonic and Anharmonic Lattice Dynamics in MgO: a First-Principles Calculation and Implications for Lattice Thermal Conductivity," Phys. Earth Planet. Inter., 174 [1] 33 (2009). https://doi.org/10.1016/j.pepi.2008.10.003
- X. Tang and J. Dong, "Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior," Proc. Natl. Acad. Sci. USA, 107 [10] 4539-4543 (2010). https://doi.org/10.1073/pnas.0907194107
- L. Chaput, A. Togo, I. Tanaka, and G. Hug, "Phonon-Phonon Interactions in Transition Metals," Phys. Rev. B, 84 [9] 094302 (2011). https://doi.org/10.1103/PhysRevB.84.094302
- A. Togo, L. Chaput, and I. Tanaka, "Distributions of Phonon Lifetimes in Brillouin Zones," Phys. Rev. B, 91 [9] 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306
- A. Katre, A. Togo, I. Tanaka, and G. K. H. Madsen, "First-Principles Study of Thermal Conductivity Cross-over in Nanostructured Zinc-Chalcogenides," J. Appl. Phys., 117 [4] 045102 (2015). https://doi.org/10.1063/1.4906461
- A. Togo and I. Tanaka, "First Principles Phonon Calculations in Materials Science," Scripta Materialia 108 1-5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021
- web page of http://atztogo.github.io/phono3py/
- W. Li, J. Carrete, N. A. Katcho, and N. Mingo, "ShengBTE: A Solver for the Boltzmann Transport Equation for Phonons," Computer Physics Communications, 185 [6] 1747 (2014). https://doi.org/10.1016/j.cpc.2014.02.015
-
O. Hellman and D. A. Borido, "Phonon Thermal Transport in
$Bi_2Te_3$ from First Principles," Phys. Rev. B, 90 [13] 134309 (2014). https://doi.org/10.1103/PhysRevB.90.134309 - K. Esfarjani, G. Chen, and H. T. Stokes, "Heat Transport in Silicon from First-Principles Calculations," Phys. Rev. B, 84 [8] 085204 (2011). https://doi.org/10.1103/PhysRevB.84.085204
- Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, "On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures," Appl. Phys. Lett., 99 [5] 053122 (2011). https://doi.org/10.1063/1.3615709
- B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, "First-Principles Simulation of Electron Mean-Free- Path Spectra and Thermoelectric Properties in Silicon," EPL(Europhysics Letters), 109 [5] 57006 (2015). https://doi.org/10.1209/0295-5075/109/57006
-
Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, "Phonon Conduction in PbSe, PbTe,
$PbSe_{1-x}Te_x$ from First-Principles Calculations," Phys. Rev. B, 85 [18] 184303 (2012). https://doi.org/10.1103/PhysRevB.85.184303 - J. M. Seklton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles," Phys. Rev. B, 89 [20] 205203 (2014). https://doi.org/10.1103/PhysRevB.89.205203
- G. K. H. Madsen, "Automated Search for New Thermoelectric Materials: The case of LiZnSb", J. Amer. Chem. Soc., 128 [37] 12140-46 (2006). https://doi.org/10.1021/ja062526a
- P. Gorai, P. Parilla, E. S. Toberer, and Vladan Stevanovic, "Computational Exploration of the Binary A1B1 Chemical Space for Thermoelectric Performance", Chem. Mater., 27 [18] 6213-21 (2015). https://doi.org/10.1021/acs.chemmater.5b01179
- B. Ryu and M. W. Oh, "Computational Simulations of Thermoelectric Transport Properties", J. Korean Ceramic Soc., 53 [3] 273-281 (2016). https://doi.org/10.4191/kcers.2016.53.3.273