DOI QR코드

DOI QR Code

Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

  • Han, Jeong A. (Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine) ;
  • Kim, Jong-Il (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Received : 2017.03.31
  • Accepted : 2017.05.04
  • Published : 2017.06.30

Abstract

We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ${\beta}$ receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

Keywords

References

  1. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011;31:986-1000. https://doi.org/10.1161/ATVBAHA.110.207449
  2. Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A, et al. P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 2002;21:5635-5644. https://doi.org/10.1093/emboj/cdf591
  3. Lee ME, Kim SR, Lee S, Jung YJ, Choi SS, Kim WJ, et al. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner. Exp Mol Med 2012;44:536-544. https://doi.org/10.3858/emm.2012.44.9.061
  4. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov 2003;2:179-191. https://doi.org/10.1038/nrd1034
  5. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009;8:18-30. https://doi.org/10.1016/j.arr.2008.07.002
  6. Kim SR, Park JH, Lee ME, Park JS, Park SC, Han JA. Selective COX-2 inhibitors modulate cellular senescence in human dermal fibroblasts in a catalytic activity-independent manner. Mech Ageing Dev 2008;129:706-713. https://doi.org/10.1016/j.mad.2008.09.003
  7. Yeo EJ, Hwang YC, Kang CM, Kim IH, Kim DI, Parka JS, et al. Senescence-like changes induced by hydroxyurea in human diploid fibroblasts. Exp Gerontol 2000;35:553-571. https://doi.org/10.1016/S0531-5565(00)00108-X
  8. Han JA, Kim JY, Kim JI. Analysis of gene expression in cyclooxygenase-2-overexpressed human osteosarcoma cell lines. Genomics Inform 2014;12:247-253. https://doi.org/10.5808/GI.2014.12.4.247
  9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge- based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  10. Barnett J, Chow J, Ives D, Chiou M, Mackenzie R, Osen E, et al. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1994;1209:130-139. https://doi.org/10.1016/0167-4838(94)90148-1
  11. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 1997;40:1347-1365. https://doi.org/10.1021/jm960803q
  12. Johnson JL, Wimsatt J, Buckel SD, Dyer RD, Maddipati KR. Purification and characterization of prostaglandin H synthase-2 from sheep placental cotyledons. Arch Biochem Biophys 1995;324:26-34. https://doi.org/10.1006/abbi.1995.9934
  13. Gerondakis S, Fulford TS, Messina NL, Grumont RJ. $NF-{\kappa}B$ control of T cell development. Nat Immunol 2014;15:15-25.
  14. Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, et al. Involvement of Rel/nuclear factor-kappaB transcription factors in keratinocyte senescence. Cancer Res 2004;64:472-481. https://doi.org/10.1158/0008-5472.CAN-03-0005
  15. Bernal GM, Wahlstrom JS, Crawley CD, Cahill KE, Pytel P, Liang H, et al. Loss of Nfkb1 leads to early onset aging. Aging (Albany NY) 2014;6:931-943.
  16. Iannetti A, Ledoux AC, Tudhope SJ, Sellier H, Zhao B, Mowla S, et al. Regulation of p53 and Rb links the alternative $NF-{\kappa}B$ pathway to EZH2 expression and cell senescence. PLoS Genet 2014;10:e1004642. https://doi.org/10.1371/journal.pgen.1004642
  17. Gitenay D, Wiel C, Lallet-Daher H, Vindrieux D, Aubert S, Payen L, et al. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death Dis 2014;5:e1089. https://doi.org/10.1038/cddis.2014.63
  18. Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 2003;376(Pt 2):403-411. https://doi.org/10.1042/bj20030816
  19. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S, et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 2010;5:e9188. https://doi.org/10.1371/journal.pone.0009188
  20. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 2010;16:238-246. https://doi.org/10.1016/j.molmed.2010.03.003
  21. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010;5:99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  22. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008;133:1006-1018. https://doi.org/10.1016/j.cell.2008.03.038
  23. Choi HR, Cho KA, Kang HT, Lee JB, Kaeberlein M, Suh Y, et al. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell 2011;10:148-157. https://doi.org/10.1111/j.1474-9726.2010.00654.x
  24. Helman A, Klochendler A, Azazmeh N, Gabai Y, Horwitz E, Anzi S, et al. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat Med 2016;22:412-420. https://doi.org/10.1038/nm.4054
  25. Zhang H, Pan KH, Cohen SN. Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 2003;100:3251-3256. https://doi.org/10.1073/pnas.2627983100
  26. Lindholm DB. Decreased transcription of neuronal polyadenylated RNA during senescence in nuclei from rat brain cortex. J Neurochem 1986;47:1503-1506. https://doi.org/10.1111/j.1471-4159.1986.tb00785.x
  27. Smith JB, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nat New Biol 1971;231:235-237. https://doi.org/10.1038/newbio231235a0
  28. McConnell BB, Starborg M, Brookes S, Peters G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 1998;8:351-354. https://doi.org/10.1016/S0960-9822(98)70137-X
  29. Wei W, Hemmer RM, Sedivy JM. Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 2001;21:6748-6757. https://doi.org/10.1128/MCB.21.20.6748-6757.2001