DOI QR코드

DOI QR Code

위성발사체 상단의 비행성능여유 분석

Analysis of Flight Performance Reserve for Upper Stage of Satellite Launch Vehicles

  • Song, Eun-Jung (Launcher Flight Performance Team, Korea Aerospace Research Institute) ;
  • Choi, Jiyoung (Launcher Flight Performance Team, Korea Aerospace Research Institute) ;
  • Cho, Sang-bum (Launcher Flight Performance Team, Korea Aerospace Research Institute) ;
  • Sun, Byung-Chan (Launcher Flight Performance Team, Korea Aerospace Research Institute)
  • 투고 : 2016.05.16
  • 심사 : 2017.04.26
  • 발행 : 2017.05.01

초록

본 논문에서는 700 km 고도의 태양동기궤도 진입을 목표로 하는 3단형 위성발사체에 있어서, 여러 오차 요인들로 인한 성능 오차를 보상하면서 목표 궤도에 정확히 투입시키는데 필요한 비행성능여유에 대해서 살펴보았다. 우선 궤도 투입 오차에 영향을 끼치는 다양한 오차 요인들과 각 오차 요인의 분산을 정의하였다. 이를 토대로 각 오차 요인의 영향을 독립적으로 고려할 수 있는 장점이 있는 민감도 분석을 ${\pm}3{\sigma}$ 분산 조건에 대해서 수행하였다. 여기에 여러 오차 요인에 의한 영향을 종합적으로 고려할 수 있는 Monte Carlo 분석 방법을 적용해서도 요구 추진제를 계산하였다. 결과적으로 두 방법을 통해 얻어진 비행성능여유를 비교했으며, 유사한 수치가 도출됨을 확인하였다.

This paper considers the analysis of the flight performance reserve, which is required propellant to compensate various launch vehicle performance deviations, to inject the payload of a 3-staged launch vehicle to a circular sun synchronous orbit at a height of 700 km. The various error sources, which affect the orbit injection accuracy, and their uncertainty are defined first. Then the sensitivity analysis, which has the advantage that each error source effect can be investigated independently, is performed for the extreme ${\pm}3{\sigma}$ conditions of the launch vehicle performance errors. Monte carlo simulations are also conducted to compute the propellant reserve, which can consider the combined effects of each error source. Finally the obtained flight performance reserves by the two approaches are compared and it is confirmed that they show similar results.

키워드

참고문헌

  1. Bell, S. C., Ginsburg, M. A., Rao, P. P., Monte Carlo analysis of the titan III/transfer orbit stage guidance system for mars observer mission. AIAA-93-3889, 1993.
  2. Chandler, D. C., Smith, I. E., Development of the iterative guidance mode with its application to various vehicles and missions, J. Spacecraft Rockets 4 (7), pp.898-903, 1967. https://doi.org/10.2514/3.28985
  3. Song, E. J., Cho, S. and Roh, W. R., Optimal selection of fuel bias and propellant residual analysis of a liquid rocket, J. of The Korean Society for Aeronautical and Space Sciences 43(1), pp.88-95, 2015. https://doi.org/10.5139/JKSAS.2015.43.1.88
  4. Hanson, J. M. and Hall, C. E., "Learning about ARES I from Monte Carlo simulation," AIAA-2008-6622.
  5. Hanson, J. M. and Pinson, R. M., Calculating Launch vehicle flight performance reserve, J. of Spacecraft and Rockets 49(2), pp.353-363, 2012. https://doi.org/10.2514/1.A32069
  6. Hanson, J. M. and Beard, B. B., Applying Monte Carlo simulation to launch vehicle design and requirements analysis, NASA TP-2010-216447, 2010.
  7. Cho, S. and Sun, B. C., A Study on Load Relief Attitude Command Design of Launch Vehicle considering Upper Wind, The 15th Space Launch Technology Symposium, 2015.
  8. Justus, C. G., Jeffries, W. R., Yung, S. P. and Johnson, D. L., The NASA/MSFC Global Reference Atmospheric Model-1995 Version (GRAM-95), NASA Technical Memorandum 4715, 1995.