과제정보
연구 과제 주관 기관 : Pars Oil and Gas Co.
참고문헌
- Amabili, M. (2008), Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, NY, USA.
- Amabili, M. (2011), "Nonlinear vibrations of laminated circular cylindrical shells, Comparison of different shell theories", Compos. Struct., 94, 207-220. https://doi.org/10.1016/j.compstruct.2011.07.001
- Amabili, M., Pellicano, F. and Paidoussis, M.P. (2001), "Nonlinear stability of circular cylindrical shells in annular and unbounded axial flow", J. Appl. Mech., 68, 827-834. https://doi.org/10.1115/1.1406957
- Bahadori, R. and Najafizadeh, M.M. (2015), "Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler-Pasternak elastic foundation by First-order Shear Deformation Theory and using Navierdifferential quadrature solution methods", Appl. Math. Model., 39(16), 4877-4894. https://doi.org/10.1016/j.apm.2015.04.012
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: A review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882
- Bochkarev, S.A. and Matveenko, V.P. (2012a), "Stability analysis of stationary and rotating circular cylindrical shells conveying flowing and rotating fluid", Mech. Solids, 47(5), 560-565. https://doi.org/10.3103/S0025654412050093
- Bochkarev, S.A. and Matveenko, V.P. (2012b), "Stability analysis of cylindrical shells containing a fluidwith axial and circumferential velocity components", J. Appl. Mech. Tech. Phys., 53(5), 768-776. https://doi.org/10.1134/S0021894412050161
- Bochkarev, S.A. and Matveenko, V.P. (2013a), "Numerical analysis of stability of a stationary or rotating circular cylindrical shell containing axially flowing and rotating fluid International", J. Mech. Sci. Thech., 68, 258-269. https://doi.org/10.1016/j.ijmecsci.2013.01.024
- Bochkarev, S.A. and Matveenko, V.P. (2013b), "Stability of a cylindrical shell subject to an annular flowof rotating fluid", J. Sound Vib., 332(18), 4210-4222. https://doi.org/10.1016/j.jsv.2013.03.010
- Chen, T.L.C. and Bert, C.W. (2010), "Dynamic stability of isotropic or composite-material cylindrical shells containing swirling fluid flow", J. Appl. Mech., 44, 112-116.
- Cortelezzi, L., Pong, A. and Paidoussis, M.P. (2004), "Flutter of rotating shells with aco-rotating axial flow", J. Appl. Mech., 71(1), 143-145. https://doi.org/10.1115/1.1636794
- Dong, K. and Wang, X. (2006), "Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment", Struct. Eng. Mech., Int. J., 24(4), 395-410. https://doi.org/10.12989/sem.2006.24.4.395
- Dowell, E.H., Srinivasan, A.V., McLean, J.D. and Ambrose, J. (1974), "Aeroelastic stability ofcylindrical shells subjected to a rotating flow", AIAA J., 12(12), 1644-1651. https://doi.org/10.2514/3.49573
- Fantuzzi, N., Bacciocchi, M., Tornabene, F., Viola, E. and Ferreira, A.J.M. (2015), "Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates", Compos. Part B: Eng., 78, 65-78. https://doi.org/10.1016/j.compositesb.2015.03.027
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Fukuda, H. and Kawata, K. (1974), "On Young's modulus of short fibre composites", Fibre Sci. Technol., 7(3), 207-222. https://doi.org/10.1016/0015-0568(74)90018-9
- Ganesan, R. and Ramu, S.A. (1995), "Vibration and stability of fluid conveying pipes with stochastic parameters", Struct. Eng. Mech., Int. J., 3(4), 313-324. https://doi.org/10.12989/sem.1995.3.4.313
- Ghorbanpour Arani, A., Haghshenas, E., Amir, S., Mozdianfard, M.R. and Latifi, M. (2013a), "Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes", Streng. Mat., 45(1), 102-115. https://doi.org/10.1007/s11223-013-9437-2
- Ghorbanpour Arani, A., Kolahchi, R. and Khoddami Maraghi, Z. (2013b), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14), 7685-7707. https://doi.org/10.1016/j.apm.2013.03.020
- Ghorbanpour Arani, A., Haghparast, E., Khoddami Maraghi, Z. and Amir, S. (2015a), "Static stress analysis of carbon nano-tube reinforced composite CNTRC cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B, 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
- Ghorbanpour Arani, A., Abdollahian, M. and Kolahchi, R. (2015b), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Compos., 36(7), 1314-1324. https://doi.org/10.1002/pc.23036
- Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015c), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
- Ghorbanpour Arani, A., Karimi, M.S. and Rabani Bidgoli, M. (2016), "Nonlinear vibration and instability of rotating piezoelectric nano-composite sandwich cylindrical shells containing axially flowing and rotating fluid-particle mixture", Polym. Compos.
- Gosselin, F. and Paidoussis, M.P. (2009), "Blocking in the rotating axial flow in a co-rotatingflexible shell", J. Appl. Mech., 76(1), 011001. https://doi.org/10.1115/1.2998486
- Gupta, U.S., Lal, R. and Sharma, S. (2006), "Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298(4), 892-906. https://doi.org/10.1016/j.jsv.2006.05.030
- Jalili, N. (2010), Piezoelectric-Based Vibration Control from Macro to Micro/Nano Scale Systems Springer Science, New York.
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT and graphene-reinforced nanocomposites using RVE ", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
- Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B, 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
- Nie, G. and Zhong, Z. (2007), "Semi-analytical solution for threedimensional vibration of functionally graded circular plates", Comput. Methods Appl. Mech. Eng., 196(49), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028
- Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multidirectional functionally graded annular plate", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Paidoussis, M.P., Misra, A.K. and Nguyen, V.B. (1992), "Internal-and annular-flow-induced instabilities of a clamped-clamped or cantilevered cylindrical shell in acoaxial conduit, the effects of system parameters", J. Sound Vib., 159(2), 193-205. https://doi.org/10.1016/0022-460X(92)90031-R
- Rabani Bidgoli, M., Karimi, M.S. and Ghorbanpour Arani, A. (2016), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733.
- Sofiyev, A.H. (2011), "Thermal buckling of FGM shells resting on a two-parameter elastic foundation", Thin-Wall. Struct., 49(10), 1304-1311. https://doi.org/10.1016/j.tws.2011.03.018
- Sofiyev, A.H. (2016), "Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells", Compos. Struct., 142, 35-44. https://doi.org/10.1016/j.compstruct.2016.01.066
- Sun, A., Xu, X., Lim, C.W., Zhou, Zh. and Xiao, Sh. (2016), "Accurate thermo-electro-mechanical buckling of shear deformable piezoelectric fiber-reinforced composite cylindrical shells", Compos. Struct., 141, 221-231. https://doi.org/10.1016/j.compstruct.2016.01.054
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., Int. J., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623
- Tahouneh, V. and Yas, M.H. (2014), "Influence of equivalent continuum model based on the Eshelby-Mori-Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates", Polym. Compos., 35(8), 1644-1661. https://doi.org/10.1002/pc.22818
- Tahouneh, V., Yas, M.H., Tourang, H. and Kabirian, M. (2013), "Semi-analytical solution for three-dimensional vibration of thick continuous grading fiber reinforced (CGFR) annular plates on Pasternak elastic foundations with arbitrary boundary conditions on their circular edges", Meccanica, 48(6), 1313-1336. https://doi.org/10.1007/s11012-012-9669-4
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
- Tornabene, F. and Ceruti, A. (2013), "Mixed static and dynamic optimization of four-parameter functionally graded completely doubly curved and degenerate shells and panels using GDQ method", Math. Prob. Eng., 2013, 1-33.
- Yang, H., Jin, G., Liu, Zh., Wang, X. and Miao, X. (2015), "Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions", Int. J. Mech. Sci., 92, 162-177. https://doi.org/10.1016/j.ijmecsci.2014.12.003