Acknowledgement
Supported by : National Natural Science Foundation of China
References
- ACI 318 (2011), Building code requirement for structural concrete and commentary; American Concrete Institute, Farmington Hills, MI, USA.
- AIJ (2001), Standard for structure calculation of steel reinforced concrete structures, Architectural Institute of Japan; Tokyo, Japan.
- AISC-LRFD (1999), Load and resistance factor design specification; American Institute of Steel Construction, Chicago, USA.
- Baltay, P. and Gjelsvik, A. (1990), "Coefficient of friction for steel on concrete at high normal stress", J. Mater. Civil Eng., 2(1), 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
- BS EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures-part 1-1: general rules for buildings; British Standard Institution, London, UK.
- CECS 159 (2004), Technical specification for structures with concrete-filled rectangular steel tube members; China Association for Engineering Construction Standardization, Beijing, China.
- CECS 254 (2012), Technical specification for solid and hollow concrete-filled steel tubular structure; China Association for Engineering Construction Standardization, Beijing, China.
- Chithira, K. and Baskar, K. (2014), "Experimental study on circular concrete filled steel tubes with and without shear connectors", Steel Compos. Struct., Int. J., 16(1), 99-116.
- Du, G.F., Song, X. and Yu, S.P. (2013), "Experimental research on axially loaded composite L-section steel tubular short columns filled with steel-reinforced concrete", J. Build. Struct., 34(8), 82-89.
- GB/T 50081 (2011), Standard for test method of mechanical properties on ordinary concrete; Standards Press of China, Beijing, China.
- GB/T 228.1 (2010), Metallic materials-Tensile testing-Part 1: method of test at room temperature; Standard Press of China, Beijing, China.
- GB 50936 (2014), Technical code for concrete filled steel tubular structures; China Architecture & Building Press, Beijing, China.
- Guo, Z.H. and Shi, X.D. (2015), Reinforced Concrete Theory and Analyse, (3rd Edition), Tsinghua University Press, Beijing, China.
- Gupta, P.K., Verma, V.K. and Khaudhair, Z.A. (2015), "Effect of tube area on the behavior of concrete filled tubular columns", Comput. Concrete, Int. J., 15(2), 141-166. https://doi.org/10.12989/cac.2015.15.2.141
- Han, L.H., Liu, W. and Yang, Y.F. (2008), "Behaviour of concretefilled steel tubular stub columns subjected to axially local compression", J. Constr. Steel Res., 64(4), 377-387. https://doi.org/10.1016/j.jcsr.2007.10.002
- Hua, W., Wang, H.J. and Hasegawa, A. (2014), "Experimental study on reinforced concrete filled circular steel tubular columns", Steel Compos. Struct., Int. J., 17(4), 517-533. https://doi.org/10.12989/scs.2014.17.4.517
- Jamaluddin, N., Lam, D. and Dai, X.H. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel Res., 87, 6-16. https://doi.org/10.1016/j.jcsr.2013.04.002
- Kim, H.S. and Kang, J.W. (2012), "An efficient structural analysis of super tall mega frame buildings using a multi-level condensation method", J. Asian Architect. Build. Eng., 11(2), 343-350. https://doi.org/10.3130/jaabe.11.343
- Lee, D., Ha, T. and Jung, M. (2014), "Evaluating high performance steel tube-framed diagrid for high-rise buildings", Steel Compos. Struct., Int. J., 16(3), 289-303. https://doi.org/10.12989/scs.2014.16.3.289
- Li, X.P. and Lu, X.L. (2008), "Modelling and experimental verification on concrete-filled steel tubular columns with T or L section", Progress Steel Build. Struct., 10(4), 56-62.
- Li, G.C., Yang, Z.J., Lang, Y. and Fang, C. (2016), "Behavior of CFST columns with inner CFRP tube under biaxial eccentric loading", Steel Compos. Struct., Int. J., 22(6), 1487-1505. https://doi.org/10.12989/scs.2016.22.6.1487
- Liu, P., Yin, C. and Li, X. (2012), "Structural system design and study of Tianjin Goldin 117 mega tower", Build. Struct., 43(3), 1-9.
- Qian, J.R., Zhang, Y. and Ji, X.D (2011), "Test and analysis of axial compressive behavior of short composite-sectioned high strength concrete filled steel tubular columns", J. Build. Struct., 32(12), 162-169.
- Shen, Z.Y., Lei, M. and Li, Y.Q. (2013), "Experimental study on seismic behavior of concrete-filled L-shaped steel tube columns", Adv. Struct. Eng., 16(7), 1235-1247. https://doi.org/10.1260/1369-4332.16.7.1235
- Tu, Y.Q., Shen, Y.F. and Li, P. (2014), "Behaviour of multi-cell composite T-shaped concrete-filled steel tubular columns under axial compression", Thin-Wall. Struct., 85, 57-70. https://doi.org/10.1016/j.tws.2014.08.003
- Wang, L.C., Wang, X.J. and Ji, D.H. (2012), "Structural design and analysis on Dalian Guomao Tower", Build. Struct., 42(2), 74-80.
- Zha, X.X., Li, Y.T. and Zhong, S.T. (2010), "Unified formula of Circular, polygonal, solid, hollow concrete filled steel tube columns under axial compression", Proceedings of the 2010 National Symposium of Steel Structure, Beijing, China, October.
- Zuo, Z.L., Cai, J. and Yang, C. (2012), "Axial load behavior of Lshaped CFT stub columns with binding bars", Eng. Struct., 37, 88-98. https://doi.org/10.1016/j.engstruct.2011.12.042
Cited by
- Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion vol.20, pp.4, 2017, https://doi.org/10.12989/eas.2021.20.4.431
- Bearing capacity of H-section beam wrapped with ceramsite concrete vol.40, pp.5, 2021, https://doi.org/10.12989/scs.2021.40.5.679