DOI QR코드

DOI QR Code

Image Quality Assessment Considering both Computing Speed and Robustness to Distortions

계산 속도와 왜곡 강인성을 동시 고려한 이미지 품질 평가

  • Received : 2017.05.25
  • Accepted : 2017.07.09
  • Published : 2017.09.15

Abstract

To assess image quality accurately, an image quality assessment (IQA) metric is required to reflect the human visual system (HVS) properly. In other words, the structure, color, and contrast ratio of the image should be evaluated in consideration of various factors. In addition, as mobile embedded devices such as smartphone become popular, a fast computing speed is important. In this paper, the proposed IQA metric combines color similarity, gradient similarity, and phase similarity synergistically to satisfy the HVS and is designed by using optimized pooling and quantization for fast computation. The proposed IQA metric is compared against existing 13 methods using 4 kinds of evaluation methods. The experimental results show that the proposed IQA metric ranks the first on 3 evaluation methods and the first on the remaining method, next to VSI which is the most remarkable IQA metric. Its computing speed is on average about 20% faster than VSI's. In addition, we find that the proposed IQA metric has a bigger amount of correlation with the HVS than existing IQA metrics.

이미지 품질을 정확히 평가하기 위해 이미지 평가 도구는 인간 시각 시스템을 반영해야 한다. 즉, 이미지의 구조, 색, 명암 비 등 여러 가지 요소들을 고려하여 평가해야 한다. 또한 스마트 폰과 같은 모바일 임베디드 기기의 폭넓은 사용에 따라 빠른 수행 속도를 갖는 것이 중요하다. 본 논문에서는 인간 시각 만족과 빠른 계산속도 달성을 동시에 얻기 위하여 색 유사도, 변화율 유사도, 위상 유사도를 상승적으로 결합하였고 최적화된 이미지 풀링 및 양자화 기반으로 설계하였다. 제안하는 기법은 기존에 존재하는 13개의 기법과 비교하였고 네 가지 검증 도구를 사용하여 성능을 검증하였다. 실험 결과 세 검증 도구에서 가장 우수한 성능을 보였고 한 검증 도구에서 기존 최고 기법인 VSI에 이어 두 번째로 좋은 성능을 보였으며 실행 속도는 VSI에 대해 평균 약 20% 개선된 결과를 얻었다. 또한 기존의 기법들 보다 더 인간 시각 시스템과 제안 기법의 품질 평가 값의 연관성이 크게 존재함을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. X. Chen, J. Zeng, Y. Chen, W. Zhang, and H. Li, "Fine-grained dynamic voltage scaling on OLED display," Proc. of the Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 807-812, 2012.
  2. J. Park, Z. Maregn, and Y. Kim, "Color transformation-based dynamic voltage scaling for mobile AMOLED displays," Electronics Express, Vol. 12, No. 8, pp. 1-12, 2015.
  3. N. Ponomarenko, et al., "Color image database TID2013: Peculiarities and preliminary results," Proc. of the 4th Eur. Workshop Vis. Inf. Process, pp. 106-111, Jun. 2013.
  4. N. Ponomarenko, et. al., "TID2008-A database for evaluation of full-reference visual quality assessment metrics," Adv. Modern Radioelectron, Vol. 10, No. 4, pp. 30-45, Oct. 2009.
  5. E. C. Larson and D. M. Chandler, "Most apparent distortion: Fullreference image quality assessment and the role of strategy," J. Electron. Imag., Vol. 19, No. 1, pp. 011006:1-011006:21, Jan. 2010.
  6. H. R. Sheikh, M. F. Sabir, and A. C. Bovik, "A statistical evaluation of recent full reference image quality assessment algorithms," IEEE Trans. Image Process, Vol. 15, No. 11, pp. 3440-3451, Nov. 2006. https://doi.org/10.1109/TIP.2006.881959
  7. A. Zaric, et. al., "VCL@FER Image Quality Assessment Database," AUTOMATIKA, Vol. 53, No. 4, pp. 344-354, 2012. https://doi.org/10.7305/automatika.53-4.241
  8. P. L. Caleet, "Florent Autrusseau Subjective quality assessment IRCCyN/IVC database," [Online]. Available: http://www.irccyn.ec-nantes.fr/ivcdb/
  9. Media Information and Communication Technology Lab: 'MICT image quality evaluation database' [Online]. Available: http://www.mict.eng.utoyama.ac.jp/mictdb.html
  10. U. Engelke, M. Kusuma, H. Zepernick, and M. Caldera, "Reduced-Reference Metric Design for Objective Perceptual Quality Assessment in Wireless Imaging," Signal Processing: Image Communication, Vol. 24, No. 7, pp. 525-547, 2009. https://doi.org/10.1016/j.image.2009.06.005
  11. D. M. Chandler and S. S. Hemami, "VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images," Proc. of the IEEE Trans. Image Process, Vol. 16, No. 9, pp. 2284-2298, 2007. https://doi.org/10.1109/TIP.2007.901820
  12. Z. Wang, A. C. Bovik H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process., Vol. 13, No. 4, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861
  13. L. Zhang, D. Zhang, X. Mou, and D. Zhang, "FSIM: A feature similarity index for image quality assessment," IEEE Trans. Image Process., Vol. 20, No. 8, pp. 2378-2386, Aug. 2011. https://doi.org/10.1109/TIP.2011.2109730
  14. L. Zhang, et. al., "VSI: A visual saliency-induced index for perceptual image quality assessment," IEEE Trans. Image Process., Vol. 23, No. 10, pp. 4270-4281, Oct. 2014. https://doi.org/10.1109/TIP.2014.2346028
  15. M. C. Q. Farias and W. Y. L. Akamine, "On performance of image quality metrics enhanced with visual attention computational models," Electron. Lett., Vol. 48, No. 11, pp. 631-633, May 2012. https://doi.org/10.1049/el.2012.0642
  16. Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multiscale structural similarity for image quality assessment," Proc. of the 37th Asilomar Conf. Signals, Syst., Comput., Nov. 2003, pp. 1398-1402.
  17. H. R. Sheikh, A. C. Bovik, and G. de Veciana, "An information fidelity criterion for image quality assessment using natural scene statistics," IEEE Trans. Image Process., Vol. 14, No. 12, pp. 2117-2128, Dec. 2005. https://doi.org/10.1109/TIP.2005.859389
  18. H. R. Sheikh and A. C. Bovik, "Image information and visual quality," IEEE Trans. Image Process., Vol. 15, No. 2, pp. 430-444, Feb. 2006. https://doi.org/10.1109/TIP.2005.859378
  19. E. C. Larson and D. M. Chandler, "Most apparent distortion: Full-reference image quality assessment and the role of strategy," J. Electron. Imag., Vol. 19, No. 1, pp. 001006:1-001006:21, Jan. 2010.
  20. A. Liu, W. Lin, and M. Narwaria, "Image quality assessment based on gradient similarity," IEEE Trans. Image Process., Vol. 21, No. 4, pp. 1500-1512, Apr. 2012. https://doi.org/10.1109/TIP.2011.2175935
  21. Z. Wang and Q. Li, "Information content weighting for perceptual image quality assessment," IEEE Trans. Image Process., Vol. 20, No. 5, pp. 1185-1198, May 2011. https://doi.org/10.1109/TIP.2010.2092435
  22. L. Zhang, D. Zhang, and X. Mou, "RFSIM: A feature based image quality assessment metric using Riesz transforms," Proc. of the 17th IEEE Int. Conf. Image Process., Sep. 2010, pp. 321-324.
  23. A. Saha and Q. M. J. Wu, "Full-reference image quality assessment by combining global and local distortion measures," IEEE Trans. Signal Process., Vol. 24, pp. 1-31, 2015.
  24. W. Xue, L. Zhang, X. Mou, and A. C. Bovik, "Gradient magnitude similarity deviation: A highly efficient perceptual image quality index," IEEE Trans. Image Process., Vol. 23, No. 2, pp. 684-695, Feb. 2014. https://doi.org/10.1109/TIP.2013.2293423
  25. C. Yang and S. H. Kwok, "Efficient gamut clipping for color image processing using LHS and YIQ," opt. Eng., Vol. 42, No. 3, pp. 701-7011, Mar. 2003. https://doi.org/10.1117/1.1544479
  26. Z. Liu and R. Laganiere, "Phase congruence measurement for image similarity assessment," Pattern Recognit. Lett., Vol. 28, No. 1, pp. 166-172, Jan. 2007. https://doi.org/10.1016/j.patrec.2006.06.019
  27. M. C. Morrone and R. A. Owens, "Feature detection from local energy," Pattern Recognit. Lett., Vol. 6, No. 5, pp. 303-313, Dec. 1987. https://doi.org/10.1016/0167-8655(87)90013-4
  28. P. Kovesi, "Image features from phase congruency," Videre: J. Comp. Vis. Res., Vol. 1, No. 3, pp. 1-26, 1999.