DOI QR코드

DOI QR Code

알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials

  • 박광민 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 조영근 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 신동철 (가천대학교 건축공학과)
  • Park, Kwang-Min (High-tech Construction Materials Center, Korea Conformity Laboratories) ;
  • Cho, Young-Keun (High-tech Construction Materials Center, Korea Conformity Laboratories) ;
  • Shin, Dong-Cheol (Dept. of Architectural Engineering, Gachon University)
  • 투고 : 2017.06.16
  • 심사 : 2017.07.17
  • 발행 : 2017.08.31

초록

본 연구의 목적은 플라이애시 및 고로슬래그 미분말로 제조한 알칼리 활성화 결합재 모르타르의 황산염 저항성에 미치는 마그네슘(Magnesium, $Mg^{2+}$) 및 황산(Sulfate, ${SO_4}^{2-}$) 이온의 영향을 확인하는 것이다. 이를 위하여 고로슬래그 미분말 치환율을 30%, 50% 및 100%, $SiO_2$$Na_2O$의 몰 비($SiO_2/Na_2O$ molar ratio, Ms)를 1.0, 1.5 및 2.0으로 조정한 시험체를 제작하였다. 그리고 $Mg^{2+}$${SO_4}^{2-}$의 영향을 확인하기 위하여 $Mg^{2+}$ 단독(10% $Mg(NO_3)_2$), ${SO_4}^{2-}$ 단독(10% $Na_2SO_4$), $Mg^{2+}$${SO_4}^{2-}$ 복합(10% [$MgCl_2+Na_2SO_4$], 10% [$Mg(NO_3)_2+Na_2SO_4$]) 및 $MgSO_4$ 수용액(10%, 5% 및 2.5% $MgSO_4$)의 조건에서 압축강도, 길이변화, 질량변화 및 X선 회절 분석을 실시하였다. 그 결과, $Mg^{2+}$${SO_4}^{2-}$가 공존하는 경우에만 황산염 침식에 의한 강도저하 및 팽창 등이 발생하는 것을 확인하였다. 이러한 현상은 $Mg^{2+}$이 규산칼슘 수화물(Calcium Silicate Hydrate, C-S-H)을 분해하여 $Ca^{2+}$이 용출되고, 용출된 $Ca^{2+}$${SO_4}^{2-}$가 결합하여 석고($CaSO_4{\cdot}2H_2O$, Gypsum)를 생성하고, $Mg^{2+}$과 OH가 결합하여 수산화마그네슘(Magnesium hydroxide, $Mg(OH)_2$, Brucite)을 생성하는 것에 기인하는 것을 확인하였다.

The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

키워드

참고문헌

  1. Davidovits, J., "Geopolymer Cement to Minimize Carbondioxide Greenhouse-warming", Ceramic Transactions, Vol. 37, 1993, pp. 165-182.
  2. Van Deventer, J. S. J., Provis, J. L., Duxson, P., and Lukey, G. G., "Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products", Journal of Hazardous Materials, Vol. 139, No. 3, 2007, pp. 506-513. https://doi.org/10.1016/j.jhazmat.2006.02.044
  3. Lothenbach, B. and Gruskovnjak, A., "Hydration of Alkaliactivated Slag: Thermodynamic Modelling", Advances in Cement Research, Vol. 19, No. 2, 2007, pp. 81-92. https://doi.org/10.1680/adcr.2007.19.2.81
  4. Richardson, I. G., Brough, A. R., Groves, G. W., and Dobson, C. M., "The Characterization of Hardened Alkali Activated Blast Furnace Slag Pastes and the Nature of the Calcium Silicate Hydrate (C-S-H) Phase", Cement and Concrete Research, Vol. 24, No. 5, 1994, pp. 813-829. https://doi.org/10.1016/0008-8846(94)90002-7
  5. Wang, S. D. and Scrivener, K. L., "Hydration Products of Alkali Activated Slag Cement", Cement and Concrete Research, Vol. 25, No. 3, 1995, pp. 561-571. https://doi.org/10.1016/0008-8846(95)00045-E
  6. Lei, M., Peng, L., Shi, C., and Wang, S., "Experimental Study on the Damage Mechanism of Tunnel Structure Suffering from Sulfate Attack", Tunnelling and Underground Space Technology, Vol. 36, 2013, pp. 5-13. https://doi.org/10.1016/j.tust.2013.01.007
  7. Shamaa, M. A., Lavaud, S., Divet, L., Nahas, G., and Torrenti, J. M., "Coupling between Mechanical and Transfer Properties and Expansion Due to DEF in a Concrete of a Nuclear Plant", Nuclear Engineering and Design, Vol. 266, 2014, pp. 70-77. https://doi.org/10.1016/j.nucengdes.2013.10.014
  8. Bae, S. H., Park, J. I., and Lee, K. M., "Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete", Journal of the Korea Concrete Institute, Vol. 22, No. 2, 2010, pp. 219-228. https://doi.org/10.4334/JKCI.2010.22.2.219
  9. Lee, S. T., "Magnesium Sulfate Attack and Deterioration Mode of Metakaolin Blended Cement Matrix", Journal of the Korea Concrete Institute, Vol. 21, No. 1, 2009, pp. 21-27. https://doi.org/10.4334/JKCI.2009.21.1.021
  10. Lee, S. T., "Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 11, No. 4, 2007, pp. 121-128.
  11. Caijun, S. and Yinyu, L., "Investigation on Some Factors Affecting the Characteristics of Alkali-phosphorus Slag Cement", Cement and Concrete Research, Vol. 19, No. 4, 1989, pp. 527-533. https://doi.org/10.1016/0008-8846(89)90004-5
  12. Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., and Mader, U., "Hydration Mechanisms of Super Sulphated Slag Cement", Cement and Concrete Research, Vol. 38, No. 7, 2008, pp. 983-992. https://doi.org/10.1016/j.cemconres.2008.03.004
  13. Park, K. M., Cho, Y. K., and Lee, B. C., "Sulfate Resistance of Alkali-Activated Materials Mortar", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 2, 2016, pp. 94-101. https://doi.org/10.11112/JKSMI.2016.20.2.094
  14. Park, K. M., Cho, Y. K., Ra, J. M., and Kim, H. S., "Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 21, No. 1, 2017, pp. 109-116.
  15. Al-Amoudi, O. S. B., "Sulfate Attack and Reinforcement Corrosion in Plain and Blended Cements Exposed to Sulfate Environments", Building and Environment, Vol. 33, No. 1, 1998, pp. 53-61. https://doi.org/10.1016/S0360-1323(97)00022-X
  16. Santhanam, M., Cohen, M. D., and Olek, J., "Mechanism of Sulfate Attack : A Fresh Look Part 1 : Summary of Experimental Results," Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 915-921. https://doi.org/10.1016/S0008-8846(02)00724-X
  17. Nath, P. and Sarker, P., "Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition", Construction and Building Materials, Vol. 66, No. 15, 2014, pp. 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  18. Arbi1, K., Nedeljkovicl, M., Zuo, Y., Grunewald, S., Keulen, A., and Ye, G., "Experimental Study on Workability of Alkali Activated Fly Ash and Slag-based Geopolymer Concretes", Geopolymers : The route to eliminate waste and emissions in ceramic and cement manufacturing, An ECI Conference, Austria, 2015, pp. 75-78.
  19. Shi, C., Pavel V. K., and Della R., Alkali-Activated Cements and Concretes, Taylor & Francis Group, 2006, pp. 150-156.
  20. Brough, A. R. and Atkinson, A., "Sodium Silicate-based, Alkali-activated Slag Mortars - Part I. Strength, Hydration and Microstructure", Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2
  21. ASTM C 1012, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to Sulfate Solution, American Society for Testing and Materials, ASTM International, USA, 2007, pp. 1-6.
  22. Monteny, J., Vincke, E., Beeldens, A., Taerwe, L., Van Gemert, D., and Verstraete, W., "Chemical, Microbiological, and in Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete", Cement and Concrete Research, Vol. 30, No. 4, 2000, pp. 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2