References
- Abdelbari, S., Fekrar, A., Heireche, H., Saidi, H., Tounsi, A. and Bedia, E.A.A. (2016), "An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundation", Wind Struct., 22(3), 329-348. https://doi.org/10.12989/was.2016.22.3.329
- Akinola, A. (1999), "An energy function for transversely isotropic elastic material and ponyting effect", Korean J. Compt Appl. Math., 6(3), 639-649.
- Akinola, A. (2001), "An application of nonlinear fundamental problems of a transversely isotropic layer in finite deformation", Int. J. Nonlinear Mech., 91(3), 307-321.
- Altekin, M. (2017), "Free transverse vibration of shear deformable super-elliptical plates", Wind Struct., 24(4), 307-331 https://doi.org/10.12989/was.2017.24.4.307
- Amenzade, Y. (1979), "Theory of elasticity", MIR Publisher, Moscow.
- An, C., Gu, J. and Su, J. (2015), "Exact solution of bending of clamped orthotropic rectangular thin plates", J. Braz. Soc. Mech. Sci. Eng., DOI 10.1007/s40430-0329-1.
- Ciarlet, P.G. (1998), "Mathematical elasticity volume I: Three-dimensional elasticity", Elsvier Science Publishers, Amsterdam.
- Fadodun, O.O. (2014), "Two-dimensional theory for a transversely isotropic thin plate in nonlinear elasticity", Ph.D. dissertation, Obafemi Awolowo University, Ile-Ife, Nigeria.
- Fadodun, O.O. and Akinola, A.P. (2017), "Bending of an isotropic non-classical thin rectangular plate", Struct. Eng.Mech., 61(4), 437-440. https://doi.org/10.12989/sem.2017.61.4.437
- Imrak, E. and Fetvaci, C. (2009), "The deflection solution of a clamped rectangular thin plate carrying uniformly load", Mech. Based Des. Struc., 37, 462-474 https://doi.org/10.1080/15397730903124262
- Liu, M.F. and Chang, T.P. (2010), "Closed form expression for the vibration of a transversely isotropic magneto-electro-elastic plate", J. Appl. Mech. T. - ASME, 77, doi: 10.1115/1.3176996.
- Lychev, S.A., Lycheva, T.N. and Manzhirov, A.V. (2011), "Unsteady vibration of a growing circular plate", 46(2), 325-333. https://doi.org/10.3103/S002565441102021X
- Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", Transection of ASME, 68, doi:10.1115/1.1380385
- Rao, S.S. (2007), "Vibration of continuous system", John Wiley and Sons.
- Shooshtari, A. and Razavi, S. (2015), "Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates", IJE Transactions A, 28(1), 136-144.
- Ventsel, E. and Krauthammer, T. (2001), "Thin plate and shell theory, analysis and application", Marce Dekker, Inc., New York and Basel NY, USA.
- Wu, H.J., Liu, A.Q. and Chen, H.L. (2007), "Exact solution for free-vibration analysis of rectangular plates using Bessel functions", J. Appl. Mech. - ASCE, 74, 1247-1251. https://doi.org/10.1115/1.2744043
- Zhong, Y., Zhao, X. and Liu, H. (2013), "Vibration of plate on foundation with four edges free by finite cosine integral transform method", Latin American J. Solids Struct., 854-862.
Cited by
- Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225