References
- ACI Committee 318 (1996), Building Code Requirements for Structural Concrete, ACI Manual of Concrete Practice Part 3: Use of Concrete in Buildings-Design, Specifications, and Related Topics, Detroit, Michigan, U.S.A.
- ACI Committee 363 (1984), "State-of-art-report on high strength concrete", ACI Mater. J., 81(4), 364-411.
- Alani, A.M., Aboutalebi, M. and Kilic, G. (2013), "Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment", J. Appl. Geophys., 97, 45-54. https://doi.org/10.1016/j.jappgeo.2013.04.009
- Alwash, M., Sbartai, Z.M. and Breysse, D. (2016), "Nondestructive assessment of both mean strength and variability of concrete: A new bi-objective approach", Constr. Build. Mater., 113, 880-889. https://doi.org/10.1016/j.conbuildmat.2016.03.120
- Birgul, R. (2009), "Hilbert transformation of waveforms to determine shear wave velocity in concrete", Cement Concrete Res., 39(8), 696-700. https://doi.org/10.1016/j.cemconres.2009.05.003
- British Standards Institution (1972), The Structural Use of Concrete. Part 1: Design, Materials and Workmanship, London, U.K.
- Carino, N.J. (2013), "Training: Often the missing link in using NDT methods", Constr. Build. Mater., 38, 1316-1329. https://doi.org/10.1016/j.conbuildmat.2011.03.060
- Demir, F. (2005), "A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic", Cement Concrete Res., 35(8), 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Demir, F. and Korkmaz, K.A. (2008), "Prediction of lower and upper bounds of elastic modulus of high strength concrete", Constr. Build. Mater., 22(7), 1385-1393. https://doi.org/10.1016/j.conbuildmat.2007.04.012
- Gajzler, M. (2016), "Supporting of repairs processes of concrete industrial floors", Eng. Struct. Technol., 8(1), 8-14. https://doi.org/10.3846/2029882X.2016.1171954
- Garbacz, A. (2015), "Application of stress based NDT methods for concrete repair bond quality control", Bull. Pol. Acad. Sci. Technol. Sci., 63(1), 77-85.
- Gesoglu, M., Guneyisi, E. and Ozturan, T. (2002), "Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete", Cement Concrete Res., 32(10), 1545-1550. https://doi.org/10.1016/S0008-8846(02)00826-8
- Han, S.H. and Kim, J.K. (2004), "Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete", Cement Concrte Res., 34(7), 1219-1227. https://doi.org/10.1016/j.cemconres.2003.12.011
- Hansen, T.C. (1986), "Recycled aggregate and recycled aggregate concrete", Mater. Struct., 19(3), 201-204. https://doi.org/10.1007/BF02472036
- Hassan, A.M.T. and Jones, S.W. (2012), "Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques", Constr. Build. Mater., 35, 361-367. https://doi.org/10.1016/j.conbuildmat.2012.04.047
- Hola, J. and Schabowicz, K. (2010), "State-of-the-art nondestructive methods for diagnostic testing of building structures-anticipated development trends", Arch. Civil Mech. Eng., 10(3), 5-18. https://doi.org/10.1016/S1644-9665(12)60133-2
- Hola, J., Sadowski, L. and Schabowicz, K. (2011), "Nondestructive identification of delaminations in concrete floor toppings with acoustic methods", Automat. Constr., 20(7), 799-807. https://doi.org/10.1016/j.autcon.2011.02.002
- KrauB, M. and Hariri, K. (2006), "Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation", Cement Concrete Compos., 28(4), 299-306. https://doi.org/10.1016/j.cemconcomp.2006.02.007
- Malhotra, V.M. and Carino, N.J. (2003), Handbook on Nondestructive Testing of Concrete, CRC Press, New York, U.S.A.
- Panesar, D.K. and Shindman, B. (2011), "Elastic properties of self-consolidating concrete", Constr. Build. Mater., 25(8), 3334-3344. https://doi.org/10.1016/j.conbuildmat.2011.03.024
- Pucinotti, R. (2015), "Reinforced concrete structure: Nondestructive in situ strength assessment of concrete", Constrs Build. Mater., 75, 331-341. https://doi.org/10.1016/j.conbuildmat.2014.11.023
- Qixian, L. and Bungey, J.H. (1996), "Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete", Constr. Build. Mater., 10(4), 237-242. https://doi.org/10.1016/0950-0618(96)00003-7
- Rehman, S.K.U., Ibrahim, Z., Memon, S.A. and Jameel, M. (2016), "Nondestructive test methods for concrete bridges: A review", Constr. Build. Mater., 107, 58-86. https://doi.org/10.1016/j.conbuildmat.2015.12.011
- Rojas-Henao, L., Fernandez-Gomez, J. and Lopez-Agui, J. (2012), "Rebound hammer, pulse velocity and core tests in selfconsolidating concrete", ACI Mater. J., 109(2), 235-243.
- Ross, M.S. (2009), Introduction to Probability and Statistics for Engineers and Scientists, 4th Edition, Elsevier Inc., U.S.A.
- Sadowski, L., Hola, J. and Czarnecki, S. (2016), "Non-destructive neural identification of the bond between concrete layers in existing elements", Constr. Build. Mater., 127, 49-58. https://doi.org/10.1016/j.conbuildmat.2016.09.146
- Saint-Pierre, F., Philibert, A., Giroux, B. and Rivard, P. (2016), "Concrete quality designation based on ultrasonic pulse velocity", Constr. Build. Mater., 125, 1022-1027. https://doi.org/10.1016/j.conbuildmat.2016.08.158
- Sansalone, M. (1997), "Impact-echo: The complete story", ACI Struct. J., 94(6), 777-786.
- Shkolnik, I.E. (2005), "Effect of nonlinear response of concrete on its elastic modulus and strength", Cement Concrete Compos., 27(7-8), 747-757. https://doi.org/10.1016/j.cemconcomp.2004.12.006
- Tayfur, G., Erdem, T.K. and Kirca, O. (2014), "Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks", J. Mater. Civil Eng., 26(11), 040140791-040140797.
- Voigt, T., Sun, Z. and Shah, S.P. (2006), "Comparison of ultrasonic wave reflection method and maturity method in evaluating early-age compressive strength of mortar", Cement Concrete Compos., 28(4), 307-316. https://doi.org/10.1016/j.cemconcomp.2006.02.003
- Wang, J.J., Chang, T.P., Chen, B.T. and Wang, H. (2012), "Determination of Poisson's ratio of solid circular rods by impact-echo method", J. Sound Vibr., 331(5), 1059-1067. https://doi.org/10.1016/j.jsv.2011.10.030
- Yildirim, H. and Sengul, O. (2011), "Modulus of elasticity of substandard and normal concretes", Constr. Build. Mater., 25(4), 1645-1652. https://doi.org/10.1016/j.conbuildmat.2010.10.009
- Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS", Adv. Eng. Softw., 67, 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004
- Zhou, F.P., Lydon, F.D. and Barr, B.I.G. (1995), "Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete", Cement Concrete Res., 25(1), 177-186. https://doi.org/10.1016/0008-8846(94)00125-I
- Zhou, J., Ye, G. and Breugel, K. (2016), "Cement hydration and microstructure in concrete repairs with cementitious repair materials", Constr. Build. Mater., 112, 765-772. https://doi.org/10.1016/j.conbuildmat.2016.02.203
- Zhou, Q., Wang, F. and Zhu, F. (2016), "Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems", Constr. Build. Mater., 127, 417-426.
- Zhou, Y., Gao, J., Sun, Z. and Qu, W. (2015), "A fundamental study on compressive strength, static and dynamic elastic moduli of young concrete", Constr. Build. Mater., 98, 137-145. https://doi.org/10.1016/j.conbuildmat.2015.08.110
Cited by
- Size Estimation of Concrete Structures Using the Impact Echo Method vol.22, pp.1, 2017, https://doi.org/10.5659/aikar.2020.22.1.23