과제정보
연구 과제 주관 기관 : Ministry of Land, Infrastructure and Transport
참고문헌
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
- Carpinteri, A. and Ferro, G. (1994), "Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure", Mater. Struct., 27(10), 563-571. https://doi.org/10.1007/BF02473124
- Cevera, M. and Chiumenti, M. (2006), "Smeared crack approach: Back to the original track", J. Numer. Anal. Meth. Geomech., 30(12), 1173-1199. https://doi.org/10.1002/nag.518
- Comite Euro-International De Beton (1993), CEB-FIP Model Code 1990, Redwood Books, Wiltshire, U.K.
- Cusatis, G. (2011), "Strain-rate effects on concrete behavior", J. Impact Eng., 38(4), 162-170. https://doi.org/10.1016/j.ijimpeng.2010.10.030
- Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., 135(8), 938-950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000039
- Gang, H.G. and Kwak, H.G. (2017), "A strain rate dependent orthotropic concrete material model", J. Impact Eng., 103, 211-224. https://doi.org/10.1016/j.ijimpeng.2017.01.027
- Georgin, J.F. and Reynouard, J.M. (2003), "Modeling of structures subjected to impact: Concrete behaviour under high strain rate", Cement Concrete Compos., 25(1), 131-143. https://doi.org/10.1016/S0958-9465(01)00060-9
- Hallquist, J.O. (2007), LS-DYNA Keyword User's Manual (Version 971), Livermore Software Technology Corporation, California, U.S.A.
- Hao, Y., Hao, H. and Zhang, X. (2012), "Numerical analysis of concrete material properties at high strain rate under direct tension", J. Impact Eng., 39(1), 51-62. https://doi.org/10.1016/j.ijimpeng.2011.08.006
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
- Holmquist, T.J., Johnson, G.R. and Cook, W.H. (1993), "A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure", Proceedings of the 14th International Symposium on Ballistics, Quebec, Canada.
- Kwak, H.G. and Filippou, F.C. (1990), Finite Element Analysis of Reinforced Concrete Structures under Monotonic Load, Research Report of Department of Civil Engineering, U.C. Berkeley, U.S.A.
- Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008
- Kwak, H.G. and Song, J.Y. (2002), "Cracking analysis of RC members using polynomial strain distribution function", Eng. Struct., 24(4), 455-468. https://doi.org/10.1016/S0141-0296(01)00112-2
- Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", J. Sol. Struct., 40(2), 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7
- Lim, S.J., Ahn, K.H., Huh, H., Kim, S.B. and Kim, H.W. (2013), "Fracture evaluation of metallic materials at intermediate strain rates", Mater. Character., 171-179.
- Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069
- Lin, Y.C., Chen, M.S. and Zhong, J. (2008), "Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel", J. Mater. Process. Technol., 205(1), 308-315. https://doi.org/10.1016/j.jmatprotec.2007.11.113
- Lu, Y.B. and Li, Q.M. (2011), "About the dynamic uniaxial tensile strength of concrete-like materials", J. Impact Eng., 38(4), 171-181. https://doi.org/10.1016/j.ijimpeng.2010.10.028
- Magnusson, J. and Hallgren, M. (2003), High Performance Concrete Beams Subjected to Shock Waves from Air Blast, Swedish Defence Research Agency, Sweden.
- Murray, Y.D. (2007), Users Manual for LS-DYNA Concrete Material Model 159, Federal Highway Administration, Washington, U.S.A.
- Peirs, J., Verleysen, P., Van Paepegem, W. and Degrieck, J. (2011), "Determining the stress-strain behaviour at large strains from high strain rate tensile and shear experiments", J. Impact Eng., 38(5), 406-415. https://doi.org/10.1016/j.ijimpeng.2011.01.004
- Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", J. Impact Eng., 32(11), 1878-1897. https://doi.org/10.1016/j.ijimpeng.2005.02.008
- Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29(4), 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
- Schwer, L.E. and Malvar, LJ. (2005), Simplified Concrete Modeling with* MAT_CONCRETE_DAMAGE_REL3, LSDYNA Anwenderforum, Bamberg, Germany.
- Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI J., 79(1), 13-27.
- Seabold, R.H. (1970), Dynamic Shear Strength of Reinforced Concrete Beams-Part 3, U.S. Naval Civil Engineering Laboratory, U.S.A.
- Shkolnik, I.E. (2008), "Influence of high strain rates on stressstrain relationship, strength and elastic modulus of concrete", Cement Concrete Compos., 30(10), 1000-1012. https://doi.org/10.1016/j.cemconcomp.2007.10.001
- Sluys, L.J. and De Borst, R. (1992), "Computational modelling of impact tests on steel fibre reinforced concrete beams", Comput. Mech. Compos. Mater., Heron, 37(4), 3-15.
- Sung, J.H., Kim, J.H. and Wagoner, R.H. (2010), "A plastic constitutive equation incorporating strain, strain-rate, and temperature", J. Plastic., 26(12), 1746-1771. https://doi.org/10.1016/j.ijplas.2010.02.005
- Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", J. Impact Eng., 37(10), 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004
- Unosson, M. and Nilsson, L. (2006), "Projectile penetration and perforation of high performance concrete: Experimental results and macroscopic modelling", J. Impact Eng., 32(7), 1068-1085. https://doi.org/10.1016/j.ijimpeng.2004.11.003
- Van Vliet, M.R. and Van Mier, J.G. (2000), "Experimental investigation of size effect in concrete and sandstone under uniaxial tension", Eng. Fract. Mech., 65(2), 165-188. https://doi.org/10.1016/S0013-7944(99)00114-9
- Vonk, R.A. (1993), A Micromechanical Investigation of Softening of Concrete Loaded in Compression, Stevin-Laboratory of the Faculty of Civil Engineering, U.S.A.
- Wittmann, F.H., Rokugo, K., Bruhwiler, E., Mihashi, H. and Simonin P. (1988), "Fracture energy and strain softening of concrete as determined by means of compact tension specimens", Mater. Struct., 21(1), 21-32. https://doi.org/10.1007/BF02472525
- Yan, D. and Lin, G. (2007), "Dynamic behaviour of concrete in biaxial compression", Mag. Concrete Res., 59(1), 45-52. https://doi.org/10.1680/macr.2007.59.1.45
- Zhang, X.X., Ruiz, G., Yu, R.C. and Tarifa, M. (2009), "Fracture behaviour of high-strength concrete at a wide range of loading rates", J. Impact Eng., 36(10), 1204-1209. https://doi.org/10.1016/j.ijimpeng.2009.04.007