DOI QR코드

DOI QR Code

A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading

  • Gang, HanGul (Department of Civil Engineering, Korean Advanced Institute of Science and Technology) ;
  • Kwak, Hyo-Gyoung (Department of Civil Engineering, Korean Advanced Institute of Science and Technology)
  • 투고 : 2016.11.23
  • 심사 : 2017.05.18
  • 발행 : 2017.07.25

초록

This paper focuses on the mesh-size dependency in numerical simulations of reinforced concrete (RC) structures subjected to blast loading. A tensile failure criterion that can minimize the mesh-dependency of simulation results is introduced based on the fracture energy theory. In addition, conventional plasticity based damage models for concrete such as the CSC model and the HJC model, which are widely used for blast analyses of concrete structures, are compared with the orthotropic model that adopts the introduced tensile failure criterion in blast tests to verify the proposed criterion. The numerical predictions of the time-displacement relations at the mid-span of RC beams subjected to blast loading are compared with experimental results. The analytical results show that the numerical error according to the change in the finite element mesh size is substantially reduced and the accuracy of the numerical results is improved by applying a unique failure strain value determined by the proposed criterion.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Land, Infrastructure and Transport

참고문헌

  1. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
  2. Carpinteri, A. and Ferro, G. (1994), "Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure", Mater. Struct., 27(10), 563-571. https://doi.org/10.1007/BF02473124
  3. Cevera, M. and Chiumenti, M. (2006), "Smeared crack approach: Back to the original track", J. Numer. Anal. Meth. Geomech., 30(12), 1173-1199. https://doi.org/10.1002/nag.518
  4. Comite Euro-International De Beton (1993), CEB-FIP Model Code 1990, Redwood Books, Wiltshire, U.K.
  5. Cusatis, G. (2011), "Strain-rate effects on concrete behavior", J. Impact Eng., 38(4), 162-170. https://doi.org/10.1016/j.ijimpeng.2010.10.030
  6. Fujikake, K., Li, B. and Soeun, S. (2009), "Impact response of reinforced concrete beam and its analytical evaluation", J. Struct. Eng., 135(8), 938-950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000039
  7. Gang, H.G. and Kwak, H.G. (2017), "A strain rate dependent orthotropic concrete material model", J. Impact Eng., 103, 211-224. https://doi.org/10.1016/j.ijimpeng.2017.01.027
  8. Georgin, J.F. and Reynouard, J.M. (2003), "Modeling of structures subjected to impact: Concrete behaviour under high strain rate", Cement Concrete Compos., 25(1), 131-143. https://doi.org/10.1016/S0958-9465(01)00060-9
  9. Hallquist, J.O. (2007), LS-DYNA Keyword User's Manual (Version 971), Livermore Software Technology Corporation, California, U.S.A.
  10. Hao, Y., Hao, H. and Zhang, X. (2012), "Numerical analysis of concrete material properties at high strain rate under direct tension", J. Impact Eng., 39(1), 51-62. https://doi.org/10.1016/j.ijimpeng.2011.08.006
  11. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
  12. Holmquist, T.J., Johnson, G.R. and Cook, W.H. (1993), "A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure", Proceedings of the 14th International Symposium on Ballistics, Quebec, Canada.
  13. Kwak, H.G. and Filippou, F.C. (1990), Finite Element Analysis of Reinforced Concrete Structures under Monotonic Load, Research Report of Department of Civil Engineering, U.C. Berkeley, U.S.A.
  14. Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008
  15. Kwak, H.G. and Song, J.Y. (2002), "Cracking analysis of RC members using polynomial strain distribution function", Eng. Struct., 24(4), 455-468. https://doi.org/10.1016/S0141-0296(01)00112-2
  16. Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", J. Sol. Struct., 40(2), 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7
  17. Lim, S.J., Ahn, K.H., Huh, H., Kim, S.B. and Kim, H.W. (2013), "Fracture evaluation of metallic materials at intermediate strain rates", Mater. Character., 171-179.
  18. Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069
  19. Lin, Y.C., Chen, M.S. and Zhong, J. (2008), "Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel", J. Mater. Process. Technol., 205(1), 308-315. https://doi.org/10.1016/j.jmatprotec.2007.11.113
  20. Lu, Y.B. and Li, Q.M. (2011), "About the dynamic uniaxial tensile strength of concrete-like materials", J. Impact Eng., 38(4), 171-181. https://doi.org/10.1016/j.ijimpeng.2010.10.028
  21. Magnusson, J. and Hallgren, M. (2003), High Performance Concrete Beams Subjected to Shock Waves from Air Blast, Swedish Defence Research Agency, Sweden.
  22. Murray, Y.D. (2007), Users Manual for LS-DYNA Concrete Material Model 159, Federal Highway Administration, Washington, U.S.A.
  23. Peirs, J., Verleysen, P., Van Paepegem, W. and Degrieck, J. (2011), "Determining the stress-strain behaviour at large strains from high strain rate tensile and shear experiments", J. Impact Eng., 38(5), 406-415. https://doi.org/10.1016/j.ijimpeng.2011.01.004
  24. Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", J. Impact Eng., 32(11), 1878-1897. https://doi.org/10.1016/j.ijimpeng.2005.02.008
  25. Roesler, J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29(4), 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
  26. Schwer, L.E. and Malvar, LJ. (2005), Simplified Concrete Modeling with* MAT_CONCRETE_DAMAGE_REL3, LSDYNA Anwenderforum, Bamberg, Germany.
  27. Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI J., 79(1), 13-27.
  28. Seabold, R.H. (1970), Dynamic Shear Strength of Reinforced Concrete Beams-Part 3, U.S. Naval Civil Engineering Laboratory, U.S.A.
  29. Shkolnik, I.E. (2008), "Influence of high strain rates on stressstrain relationship, strength and elastic modulus of concrete", Cement Concrete Compos., 30(10), 1000-1012. https://doi.org/10.1016/j.cemconcomp.2007.10.001
  30. Sluys, L.J. and De Borst, R. (1992), "Computational modelling of impact tests on steel fibre reinforced concrete beams", Comput. Mech. Compos. Mater., Heron, 37(4), 3-15.
  31. Sung, J.H., Kim, J.H. and Wagoner, R.H. (2010), "A plastic constitutive equation incorporating strain, strain-rate, and temperature", J. Plastic., 26(12), 1746-1771. https://doi.org/10.1016/j.ijplas.2010.02.005
  32. Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", J. Impact Eng., 37(10), 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004
  33. Unosson, M. and Nilsson, L. (2006), "Projectile penetration and perforation of high performance concrete: Experimental results and macroscopic modelling", J. Impact Eng., 32(7), 1068-1085. https://doi.org/10.1016/j.ijimpeng.2004.11.003
  34. Van Vliet, M.R. and Van Mier, J.G. (2000), "Experimental investigation of size effect in concrete and sandstone under uniaxial tension", Eng. Fract. Mech., 65(2), 165-188. https://doi.org/10.1016/S0013-7944(99)00114-9
  35. Vonk, R.A. (1993), A Micromechanical Investigation of Softening of Concrete Loaded in Compression, Stevin-Laboratory of the Faculty of Civil Engineering, U.S.A.
  36. Wittmann, F.H., Rokugo, K., Bruhwiler, E., Mihashi, H. and Simonin P. (1988), "Fracture energy and strain softening of concrete as determined by means of compact tension specimens", Mater. Struct., 21(1), 21-32. https://doi.org/10.1007/BF02472525
  37. Yan, D. and Lin, G. (2007), "Dynamic behaviour of concrete in biaxial compression", Mag. Concrete Res., 59(1), 45-52. https://doi.org/10.1680/macr.2007.59.1.45
  38. Zhang, X.X., Ruiz, G., Yu, R.C. and Tarifa, M. (2009), "Fracture behaviour of high-strength concrete at a wide range of loading rates", J. Impact Eng., 36(10), 1204-1209. https://doi.org/10.1016/j.ijimpeng.2009.04.007