DOI QR코드

DOI QR Code

Distribution Patterns and Ecological Characters of Paulownia coreana and P. tomentosa in Busan Metropolitan City Using MaxEnt Model

MaxEnt 모형을 활용한 부산광역시 내 오동나무 및 참오동나무의 분포 경향과 생태적 특성

  • 이창우 (국립생태원 생물관리연구본부) ;
  • 이철호 (동의대학교 분자생물학과) ;
  • 최병기 (동의대학교 분자생물학과)
  • Received : 2017.03.29
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

Paulownia species has long been recognized in Korean traditional culture and the values of the species have been researched in various focuses. However, studies on distribution and ecological characteristics of the species are still needed. This study aimed to identify distribution trends and ecological characteristics of two Paulownia species in Busan metropolitan city using the MaxEnt model. The MaxEnt model was established based on the environmental factors such as positioning information of the Paulownia species, topography, climate and degree of anthropogenic disturbance potentiality (ADP), which was collected in the on-site research. The study verified that the accuracy of the model was appropriate as the AUC value of Paulownia coreana and P. tomentosa was 0.809, respectively. In terms of the distribution trends of the two Paulownia species in the research area depending on the distribution model, they were both mainly distributed in downtown where built-up area and bare ground were densely concentrated. The potential distribution area of the two species was identified as $137.4km^2$ for P. coreana and $135.0km^2$ for P. tomentosa. The distribution probability was high in Jung-gu, Dongrae-gu, Busanjin-gu and Yeonje-gu. As a result of the analysis on contribution of the environmental factors, it was turned out that the degree of anthropogenic disturbance potentiality (ADP) contributed to distribution of P. coreana and P. tomentosa by about 50%, and the contribution of the environmental factors had a positive correlation with the degree of ADP. The elevation had a negative correlation with both the two species, which was considered because the species must compete more with native species in natural habitats as the altitude above sea level rises. The research findings demonstrated numerically that the distribution of P.coreana and P. tomentosa depended on artificial activities, and indicated the relevance with the Korean traditional landscape. These findings are expected to provide meaningful information in using, preserving and restoring Paulownia species.

오동나무는 한국 전통 문화에서 오래전부터 인식되어 왔으며, 다양한 분야에서 종의 가치에 대해 연구되어 왔다. 그러나 종의 분포와 생태적 특성에 대한 연구는 미흡한 상황이다. 본 연구는 MaxEnt 모형을 활용하여 부산광역시 내 오동나무 두 종의 분포 경향 및 생태적 특성을 밝히는데 목적을 두고 있다. MaxEnt 모형은 현장 조사로 수집된 오동나무 종의 위치 정보와 지형, 기후, 잠재인간간섭도와 같은 환경 인자로 구축되었다. 연구결과 AUC 값은 오동나무와 참오동나무가 각각 0.809으로 모형의 정확도가 적절한 것으로 확인되었다. 분포모형에 따른 연구지역 내 오동나무와 참오동나무의 분포 경향은 두 종 모두 시가지, 나지가 밀집해 있는 도심위주의 분포를 나타냈다. 두 종의 잠재분포가능면적은 오동나무 $137.4km^2$, 참오동나무 $135.0km^2$로 확인되었으며, 중구, 동래구, 부산진구, 연제구 등에서 높은 확률로 분포하였다. 환경요인의 기여도 분석 결과, 오동나무와 참오동나무의 분포에 잠재인간간섭도가 약 50% 내외의 기여를 하는 것으로 확인되었고, 잠재인간간섭도와 양의 상관관계를 나타냈다. 해발고도는 두 종 모두에서 음의 상관관계를 보였으며, 해발고도가 증가할수록 자연서식처에서 자생종과의 경쟁이 증가하기 때문인 것으로 판단된다. 본 연구의 결과들은 오동나무와 참오동나무의 분포가 인위적 활동에 의존되어 있음을 수리적으로 나타내는 결과이며, 한국 전통경관과의 관련성을 암시하는 결과이다. 이러한 결과는 추후 오동나무의 활용 및 보존, 복원에 있어서 의미 있는 정보를 제공할 수 있을 것으로 판단된다.

Keywords

References

  1. Lee, W. C.(1996). Colored standard illustrations of Korean. Seoul: Academy.
  2. Hong, H. S.(2013). Species, Planting Position and Scenic Utilization of 'Paulownia Tree (梧桐)' in the Traditional Garden. Journal of Korean Institute of Traditional Landscape Architecture. 31(2): 20-30.
  3. Kim, M. J.(2011). A Study of Tree Planting Activities in the Later Joseon Dynasty. Keimvung Korean Studies Journal. 43: 249-282.
  4. Lee, S. H., Jin, H. Y., Lee, H. C., Moon, A. R., Choi, W. K., Song, Y. J. and Song, J. H.(2016). A Study on the Current Planting Status and Maintenance Plans of Traditional Korean Temples. Journal of the Korean Institute of Traditional landscape Architecture. 34(1): 53-70. https://doi.org/10.14700/KITLA.2016.34.1.053
  5. Shim, C. S.(1982). The Mechanical Properties of Paulownia tomentosa and Paulownia coreana in Korea. Journal of the Korean Wood Science and Technology. 10(3): 3-3.
  6. Park, S. J.(1992). Archeological Woods in Korea and Its Uses. Review of Architecture and Building Science. 36(4): 102-105.
  7. Akyildiz, M. H. and Kol, H. S.(2010). Some Technological Properties and Uses of Paulownia (Paulownia tomentosa Steud.) wood. Journal of Environmental Biology. 31(3): 351-355.
  8. Chung, Y. J., Kang, S. Y. and Choi, Y. A.(2008). Analysis on Antifungal Activity of Paulownia-wood Storage Box and Application of Natural Biocide for the Activity Enhancement. Journal of Conservation Science. 24: 75-83.
  9. Kang, B. H.(2008). A herb Medicine Resource Ecology Illustrations in Korea. Seoul: Youngsinsa.
  10. Kang, B. H.(2012). Resource Plant Used as a Medicine and Food in Korea. Paju: Korean Studies Information.
  11. Jeong, M. J., Park, G. U, Jeong, H. R., Son, S. G., Kim, H. J., Choi, J., Lee, C. H., Sin, C. H. and Kim, S. S.(2013). Folk Plant in Korea. Seoul: Korea Disabled Welfare Association.
  12. Oh, J. S. and Zee, O. P.(2000). Cytotoxic Compounds from the Flowers of Paulownia coreana. Korean Journal of Pharmacognosy. 31(4): 449-454.
  13. Jun, B. S., Cha, J. Y. and Cho, Y. S.(2001). Antioxidative Activities of Fruit Extracts of Paulownia tomentosa Stuffed. Korean Journal of Food Preservation. 8(2): 231-238.
  14. Lee, S. E., Seong, N. S., Bang, J. K., Park, C. G., Sung, J. S. and Song, J.(2003). Antioxidative Activities of Korean Medicinal Plants. Korean Journal of Medicinal Crop Science. 11(2): 127-134.
  15. Si, C. L., Kim, J. G., Gwon, D. J. and Bae, Y. S.(2006). Phenolic Compounds from the Fruits of Paulownia coreana Uyeki. Journal of the Korean Wood Science and Technology. 34(1): 79-85.
  16. Kim, T. W., Min, K. M, Yu, S. J., Lee, M. J, Jung, H. M., Cho, W. J., Kim, M. J., Chun. W. J. and Kwon, Y. S.(2015). Chemical Constituents of the Twigs of Paulownia coreana. Korean Journal of Pharmacognosy. 46(2): 99-104.
  17. Franklin, J.(2009). Mapping Species Distributions: Spatial Inference and Prediction. UK: Cambridge University Press.
  18. Elith, J. and Leathwick, J. R.(2009). Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annual Review of Ecology, Evolution, and Systematics. 40: 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  19. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. and Yates, C. J.(2011). A Statistical Explanation of MaxEnt for Ecologists. Diversity and Distributions. 17(1): 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  20. Park, H. C.(2016). Development and Application of Climate Change Sensitivity Assessment Method for Plants Using The Species Distribution Models -Focused on 44 plants among the Climatesensitive Biological Indicator Species-. Ph. D. dissertation. Kangwon national university, Kangwon.
  21. Phillips, S. J., Anderson, R. P. and Schapire, R. E.(2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling. 190(3): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  22. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006). Novel Methods Improve Prediction of Species ' Distributions from occurrence Data. Ecography. 29: 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  23. Pearson, R. G., Raxworthy, C. J., Nakamura, M. Townsend and Peterson, A.(2007). Predicting Species Distributions from Small Numbers of Occurrence Records: a Test Case Using Cryptic Geckos in Madagascar. Journal of Biogeography. 34(1): 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  24. Seo, C. W., Park, Y. R. and Choi, Y. S.(2008). Comparison of Species Distribution Models According to Location Data. Journal of Korean Society for Geospatial Information System. 16(4): 59-64.
  25. Kim, J., Seo, C., Kwon, H., Ryu, J. and Kim, M.(2012). A study on the Species Distribution Modeling Using National Ecosystem Survey Data. Journal of Environmental Impact Assessment. 21(4): 593-607. https://doi.org/10.14249/EIA.2012.21.4.593
  26. Korea Meteorological Administration(2011). Climatological Normals of Korea. Seoul: Korea Meteorological Administration.
  27. Kim, J. W.(2003). Rapid Ecoassessment Technique about Anthropogenic Disturbance Potentiality of Land Use. Journal of Ecology and Environment. 26(1): 419-22.
  28. Thuiller, W.(2003). BIOMOD-Optimizing Predictions of Species Distributions and Projecting Potential Future Shifts under Global Change. Global Change Biology. 9(10): 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  29. Merow, C., Smith, M. J. and Silander, J. A.(2013). A Practical Guide to MaxEnt for Modeling Species' Distributions: What It Does, and Why Inputs and Settings Matter. Ecography. 36(10): 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  30. Swets, J. A.(1988). Measuring the Accuracy of Diagnostic Systems. Science. 240(4857): 1285. https://doi.org/10.1126/science.3287615
  31. Liu, C., Berry, P. M., Dawson, T. P. and Pearson, R. G.(2005). Selecting Thresholds of Occurrence in the Prediction of Species Distributions. Ecography. 28(3): 385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
  32. Jung, Y. K.(1995). A syntaxonomical study on the mantle communities in South Korea. Kyungpook University Ph.D Thesis.
  33. Grubisic, D. and Konjevic, R.(1990). Light and Nitrate Interaction in Phytochrome-controlled Germination of Paulownia tomentosa Seeds. Planta. 181(2): 239-243. https://doi.org/10.1007/BF02411545
  34. Longbrake, A. C. W.(2001). Ecology and Invasive Potential of Paulownia tomentosa (Scrulariaceae) in a Hardwood Forest Landscape. Ohio University Ph.D Thesis.
  35. Grubisic, D., Konjevic, R. and Neskovic, M.(1988). The effect of some growth regulators on light-induced germination of Paulownia tomentosa seeds. Physiologia Plantarum. 72(3): 525-28. https://doi.org/10.1111/j.1399-3054.1988.tb09160.x
  36. Roger, W.(2012). Effects of fire and invasive Paulownia tomentosa on native tree regeneration in southern Ohio after two years. Ohaio State University. Ph. M Thesis.
  37. Turner, B. Gregory, Y., Robyne, D., Lau, R. and Young, D. R.(1988). Effect of acidity on germination and seedling growth of Paulownia tomentosa. Journal of Applied Ecology. 25: 561-67. https://doi.org/10.2307/2403844
  38. Williams-Linera, G.(1990). Origin and early development of forest edge vegetation in Panama. Biotropica. 22(3): 235-41. https://doi.org/10.2307/2388533
  39. Lim, J. C., Ryu, T. B., Ahn, K. H. and Choi, B. K.(2016) The development of vulnerable elements and assessment of vulnerability of Maeuhsoop ecosystem in Korea. Journal of the Korean Institute of Traditional landscape Architecture. 34(4): 57-65. https://doi.org/10.14700/KITLA.2016.34.4.057
  40. Kim, M. Y. 2004. Korean endemic plants. Seoul : Solgwahak Press.
  41. Lim, E. J. and So, H. S. 2014. Landscpae gardening culture in late Josen dynasity depicted in 'Ahoido' paintings. Journal of the Korean Institute of Traditional landscape Architecture. 32(3): 46-57. https://doi.org/10.14700/KITLA.2014.32.3.046
  42. Choi, B. K. and Lee, C. B. 2015. A Study on the Synecological Values of the Torreya nucifera Forest (Natural Monument No. 374) at Pyeongdae-ri in Jeju Island. Journal of the Korean Institute of Traditional landscape Architecture. 33(4): 87-98. https://doi.org/10.14700/KITLA.2015.33.4.087
  43. Choi, B. K. Lim, J. C. and Lee, C. W. 2015. Conservation Methods and Vascular plants of Oriental Thuja Community in Dodong, Daegu. Journal of the Korean Institute of Traditional landscape Architecture. 33(3): 72-83. https://doi.org/10.14700/KITLA.2015.33.3.072