DOI QR코드

DOI QR Code

A new meta-heuristic optimization algorithm using star graph

  • Gharebaghi, Saeed Asil (Department of Civil Engineering, K. N. Toosi University of Technology) ;
  • Kaveh, Ali (Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology) ;
  • Ardalan Asl, Mohammad (Department of Civil Engineering, K. N. Toosi University of Technology)
  • 투고 : 2016.11.07
  • 심사 : 2017.05.23
  • 발행 : 2017.07.25

초록

In cognitive science, it is illustrated how the collective opinions of a group of individuals answers to questions involving quantity estimation. One example of this approach is introduced in this article as Star Graph (SG) algorithm. This graph describes the details of communication among individuals to share their information and make a new decision. A new labyrinthine network of neighbors is defined in the decision-making process of the algorithm. In order to prevent getting trapped in local optima, the neighboring networks are regenerated in each iteration of the algorithm. In this algorithm, the normal distribution is utilized for a group of agents with the best results (guidance group) to replace the existing infeasible solutions. Here, some new functions are introduced to provide a high convergence for the method. These functions not only increase the local and global search capabilities but also require less computational effort. Various benchmark functions and engineering problems are examined and the results are compared with those of some other algorithms to show the capability and performance of the presented method.

키워드

참고문헌

  1. Akin, A. and Saka, M.P. (2015), "Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions", Comput. Struct., 147, 79-95. https://doi.org/10.1016/j.compstruc.2014.10.003
  2. American Institute of Steel Construction (AISC), (2001), Manual of steel construction: load and resistance factor design.
  3. Camp, C.V., Bichon, B.J. and Stovall, S. (2005), "Design of steel frames using ant colony optimization", 131(3), J. Struct. Eng.-ASCE, 369-379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
  4. Chelouah, R. and Siarry, P. (2000), "Tabu search applied to global optimization", Eur. J. Oper. Res., 123(2), 256-270. https://doi.org/10.1016/S0377-2217(99)00255-6
  5. Chelouah, R. and Siarry, P. (2003), "Genetic and Nelder-Mead algorithms hybridised for a more accurate global optimisation of continuous multidimensional functions", Eur. J. Oper. Res., 148(2), 335-348. https://doi.org/10.1016/S0377-2217(02)00401-0
  6. Coello, C.A.C. (2000), "Use of a self-adaptive penalty approach for engineering optimization problems", Comput. Indust., 41(2), 113-127. https://doi.org/10.1016/S0166-3615(99)00046-9
  7. Coello, C.A.C. and Montes, E.M. (2002), "Constraint-handling in genetic algorithms through the use of dominance-based tournament selection", Adv. Eng. Inf., 16(3), 193-203. https://doi.org/10.1016/S1474-0346(02)00011-3
  8. Deb, K. and Gene, A.S. (1997), "A robust optimal design technique for mechanical component design", (Eds., Dasgupta, D. and Michalewicz, Z.), Evolutionary Algorithms in Engineering Applications, Springer, Berlin, 497-514.
  9. Degertekin, S.O. (2008), "Optimum design of steel frames using harmony search algorithm", Struct. Multidiscip. O., 36(4), 393-401. https://doi.org/10.1007/s00158-007-0177-4
  10. Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE T. Syst. Man Cy. B, 41, 26-29.
  11. Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
  12. Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan.
  13. Farshi, B. and Ziazi, A.A. (2010), "Sizing optimization of truss structures by method of centers and force formulation", Int. J. Solids Struct., 47(18-19), 2508-2524. https://doi.org/10.1016/j.ijsolstr.2010.05.009
  14. Georgieva, A. and Jordanov, I. (2010), "A hybrid meta-heuristic for global optimization using low-discrepancy sequences of points", Comput. Oper. Res., 37(3), 456-469. https://doi.org/10.1016/j.cor.2008.07.004
  15. Goldberg, D. (1989), Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA.
  16. He, Q. and Wang, L. (2007), "An effective co-evolutionary particle swarm optimization for constrained engineering design problems", Eng. Appl. Artif. Intel., 20(1), 89-99. https://doi.org/10.1016/j.engappai.2006.03.003
  17. John, K.V., Ramakrishnan, C.V. and Sharma, K.G. (1987), "Minimum weight design of trusses using improved move limit method of sequential linear programming", Comput. Struct., 27(5), 583-591. https://doi.org/10.1016/0045-7949(87)90073-3
  18. Kannan, B.K. and Kramer, S.N. (1994), "An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design", J. Mech. Des.-ASME DC, 116(2), 318-320.
  19. Kaveh, A. and Talatahari, S. (2009), "Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization", Studies Comput. Intell., 239, 159-198.
  20. Kaveh, A. and Ghafari, M.H. (2016), "Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams", Struct. Eng. Mech., 59(5), 933-950. https://doi.org/10.12989/sem.2016.59.5.933
  21. Kaveh, A. and Ilchi Ghazaan, M. (2015), "A comparative study of CBO and ECBO for optimal design of skeletal structures", Comput. Struct., 153, 137-147. https://doi.org/10.1016/j.compstruc.2015.02.028
  22. Kaveh, A. and Khayatazad, M. (2012), "A new meta-heuristic method: Ray Optimization", Comput. Struct., 112-113, 283-294. https://doi.org/10.1016/j.compstruc.2012.09.003
  23. Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005
  24. Kaveh, A. and Moradveisi, M. (2016), "Nonlinear analysis based optimal design of double-layer grids using enhanced colliding bodies optimization method", Struct. Eng. Mech., 58(3), 555-576. https://doi.org/10.12989/sem.2016.58.3.555
  25. Kaveh, A. and Rahami, H. (2006), "Analysis, design and optimization of structures using force method and genetic algorithm", Int. J. Numer. Meth. Eng., 65(10), 1570-1584. https://doi.org/10.1002/nme.1506
  26. Kaveh, A. and Shokohi, F. (2016), "Optimum design of laterallysupported castellated beams using tug of war optimization algorithm", Struct. Eng. Mech., 58(3), 533-553. https://doi.org/10.12989/sem.2016.58.3.533
  27. Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 289, 213-267.
  28. Kaveh, A. and Talatahari, S. (2010b), "A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures", Asian J. Civil Eng., 11(1), 103-122.
  29. Kaveh, A. and Talatahari, S. (2010c), "Optimum design of skeletal structure using imperialist competitive algorithm", Comput. Struct., 88(21-22), 1220-1229. https://doi.org/10.1016/j.compstruc.2010.06.011
  30. Kaveh, A. and Talatahari, S. (2012), "Charged system search for optimal design of frame structures", Appl. Soft. Comput., 12(1), 382-393. https://doi.org/10.1016/j.asoc.2011.08.034
  31. Kaveh, A. and Zolghadr, A. (2016), "Optimal analysis for optimal design of cyclically repeated space trusses with frequency constraints, Smart Structures and Systems", Smart Struct. Syst., 18(4), 733-754. https://doi.org/10.12989/sss.2016.18.4.733
  32. Kaveh, A., Bakhshpoori, T. and Afshari, E. (2014), "An efficient hybrid particle swarm and swallow swarm optimization algorithm", Comput. Struct., 143, 40-59. https://doi.org/10.1016/j.compstruc.2014.07.012
  33. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia.
  34. Lamberti, L. and Pappalettere, C. (2003), "Move limits definition in structural optimization with sequential linear programming, Parts I & II", Comput. Struct., 81(4), 197-238. https://doi.org/10.1016/S0045-7949(02)00442-X
  35. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Method. Appl. M., 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  36. Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic particle swarm optimizer for optimization of pin connected structures", Comput. Struct., 85(7-8), 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020
  37. Liu, S.Q. and Kozan, E. (2016), "New graph-based algorithms to efficiently solve large scale open pit mining optimization problems", Exp. Syst. Appl., 43, 59-65. https://doi.org/10.1016/j.eswa.2015.08.044
  38. Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Softw., 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010
  39. Montes, E.M. and Coello, C.A.C. (2008), "An empirical study about the usefulness of evolution strategies to solve constrained optimization problems", Int. J. Gen. Sys., 37(4), 443-473. https://doi.org/10.1080/03081070701303470
  40. Price, K., Storn, R. and Lampinen, J. (2005), Differential evolution-a practical approach to global optimization, Berlin, Springer.
  41. Rizzi, P. (1976), "Optimization of multi-constrained structures based on optimality criteria", Proceedings of the AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference, King of Prussia, PA.
  42. Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. (2012), "Mine blast algorithm for optimization of truss structures with discrete variables", Comput. Struct., 102-103, 49-63. https://doi.org/10.1016/j.compstruc.2012.03.013
  43. Saka, M.P. (2014), "Shape and topology optimization design of skeletal structures using metaheuristic algorithms: A review", Comput. Technol. Rev., 9, 31-68. https://doi.org/10.4203/ctr.9.2
  44. Saka, M.P. and Kameshki, E.S. (1998), "Optimum design of multistory sway steel frames to BS 5950 using a genetic algorithm", Proceedings of the 4th International Conference on Computational Structures Technology, Edinburgh, Scotland, UK.
  45. Saka, M.P., Hasancebi, O. and Geem, Z.W. (2016), "Metaheuristics in structural optimization and discussions on harmony search algorithm", Swarm Evol. Comput., 28, 88-97. https://doi.org/10.1016/j.swevo.2016.01.005
  46. Sandgren, E. (1988), "Nonlinear integer and discrete programming in mechanical design", Proceedings of the ASME design technology conference, Kissimine, F.L.
  47. Schmit, L.A. and Farshi, B. (1974), "Some approximation concepts for structural synthesis", AIAA J., 12(5), 692-699. https://doi.org/10.2514/3.49321
  48. Schmit, L.A. and Miura, H. (1976), Approximation concepts for efficient structural synthesis, NASA-CR-2552, NASA, Washington, DC.
  49. Sedaghati, R. (2005), "Benchmark case studies in structural design optimization using the force method", Int. J. Solids Struct., 42(21-22), 5848-5871. https://doi.org/10.1016/j.ijsolstr.2005.03.030
  50. Sharafi, P., The, L.H. and Hadi, M.N.S., (2014a), "Shape optimization of thin-walled steel sections using graph theory and ACO algorithm", J. Constr. Steel Res., 101, 331-341. https://doi.org/10.1016/j.jcsr.2014.05.026
  51. Sharafi, P., Teh, L.H. and Hadi, M.N.S. (2014b), "Conceptual design optimization of rectilinear building frames: a knapsack problem approach", Eng. Optim., 47(10), 1303-1323. https://doi.org/10.1080/0305215X.2014.963068
  52. Talatahari, S. (2016), "Symbiotic organisms search for optimum design of and grillage system", Asian J. Civil Eng., 17(3), 299-313.
  53. Talatahari, S., Gandomi, A.H., Yang, X.S. and Deb, S. (2015), "Optimum design of frame structures using the eagle strategy with differential evolution", Eng. Struct., 91, 16-25. https://doi.org/10.1016/j.engstruct.2015.02.026
  54. Talatahari, S., Kheirollahi, M., Farahmandpour, C. and Gandomi, A.H. (2013), "A multi-stage particle swarm for optimum design of truss structures", Neural Comput. Appl., 23(5), 1297-1309. https://doi.org/10.1007/s00521-012-1072-5
  55. Tsoulos, I.G. (2008), "Modifications of real code genetic algorithm for global optimization", Appl. Math. Comput., 203(2), 598-607. https://doi.org/10.1016/j.amc.2008.05.005
  56. Venkayya, V.B. (1971), "Design of optimum structures", Comput. Struct., 1(1-2), 265-309. https://doi.org/10.1016/0045-7949(71)90013-7
  57. Wang, D. (2015), "Bandwidth-efficiency-oriented topology optimization for integrated switching systems based on circulant graphs", Comput. Netw., 83, 199-216. https://doi.org/10.1016/j.comnet.2015.03.012
  58. Yang, X.S. (2010), "A new metaheuristic bat-inspired algorithm", Nature Inspired Cooperative Strategies for Optimization (NISCO, 2010) (Eds., Gonzalez, J.R. et al.), Studies in Computational Intelligence, Springer, Berlin: Springer.
  59. Zheng, R., Ngo, N., Shum, P. and Tjin, S. (2005), "A staged continuous tabu search algorithm for the global optimisation and its applications to the design of fibre Bragg gratings", Comput. Optim. Appl., 30(3), 319-335. https://doi.org/10.1007/s10589-005-4563-9

피인용 문헌

  1. A New Optimization Algorithm Based on Search and Rescue Operations vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2482543