Acknowledgement
Supported by : Ministry of Higher Education Malaysia
References
- Antolini, M., Kose, O. and Gurocak, H. (2013), "Haptic device with spherical MR-brake for wrist rehabilitation", Proceedings of 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Portland, Oregon, August.
- Avraam, M.T. (2009), MR-fluid brake design and its application to a portable muscular rehabilitation device, Doktora Tezi, Universite Libre De Bruxelles, Faculte De Sciences Appliquees.
- Babesse, E., Belkhiat, S., Cherif, A., Meddad, M., Eddiai, A. and Boughaleb, Y. (2016), "Improved modal observer for modal SSDI-Max", Molecular Crystals Liquid Crystals, 628(1), 145-161. https://doi.org/10.1080/15421406.2015.1137118
- Carlson, J.D. and Jolly, M.R. (2000), "MR fluid, foam and elastomer devices", Mechatronics, 10(4), 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
- Cha, Y.J. and Agrawal, A.K. (2016), "Robustness studies of sensor faults and noises for semi-active control strategies using largescale magnetorheological dampers", J. Vib. Control, 22(5), 1228-1243. https://doi.org/10.1177/1077546314535947
- Diyana Nordin, N.H., Muthalif, A.G.A., Saleh, T. and Azlan, N.Z. (2015), "Optimal particle ratio to maximize the dynamic range of magnetorheological fluid (MRF) damper for prosthetic limb", Proceedings of the 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, June.
- Dong, S., Lu, K.Q., Sun, J.Q. and Rudolph, K. (2006), "Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids", Neural Syst. Rehabilit. Eng., IEEE T., 14(1), 55-63. https://doi.org/10.1109/TNSRE.2005.863839
- Ekkachai, K., Tantaworrasilp, A., Nithi-Uthai, S., Tungpimolrut, K. and Nilkhamhang, I. (2014), "Variable walking speed controller of MR damper prosthetic knee using neural network predictive control", Proceedings of the SICE Annual Conference (SICE), Sapporo, Japan, September.
- Gordaninejad, F. and Kelso, S.P. (2000), "Fail-safe magnetorheological fluid dampers for off-highway, high-payload vehicles", J. Intel. Mat. Syst. Str., 11(5), 395-406. https://doi.org/10.1106/K90W-1A63-7QA7-6EH4
- Hato, M.J., Choi, H.J., Sim, H.H., Park, B.O. and Ray, S.S. (2011), "Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties", Colloid. Surface. A, 377(1), 103-109. https://doi.org/10.1016/j.colsurfa.2010.12.029
- Huang, J., Zhang, J., Yang, Y. and Wei, Y. (2002), "Analysis and design of a cylindrical magneto-rheological fluid brake", J. Mater. Process. Technol., 129(1), 559-562. https://doi.org/10.1016/S0924-0136(02)00634-9
- Kim, J.H. and Oh, J.H. (2001), "Development of an above knee prosthesis using MR damper and leg simulator", Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea.
- Kwak, M.K., Lee, J.H., Yang, D.H. and You, W.H. (2014), "Hardware-in-the-loop simulation experiment for semi-active vibration control of lateral vibrations of railway vehicle by magneto-rheological fluid damper", Vehicle Syst. Dyn., 52(7), 891-908. doi: 10.1080/00423114.2014.906631
- Makihara, K., Kuroishi, C. and Fukunaga, H. (2013), "Adaptive multimodal vibration suppression using fuzzy-based control with limited structural data", Smart Mater. Struct., 22(7), 075031. https://doi.org/10.1088/0964-1726/22/7/075031
- Mazlan, S., Ekreem, N.B. and Olabi, A. (2007), "The performance of magnetorheological fluid in squeeze mode", Smart Mater. Struct., 16(5), 1678. https://doi.org/10.1088/0964-1726/16/5/021
- Najmaei, N., Kermani, M.R. and Patel, R.V. (2015), "Suitability of small-scale magnetorheological fluid-based clutches in haptic interfaces for improved performance", IEEE/ASME T. Mechatron., 20(4), 1863-1874. https://doi.org/10.1109/TMECH.2014.2357447
- Nakano, H. and Nakano, M. (2014), "Evaluation and training system of muscle strength for leg rehabilitation utilizing an MR fluid active loading machine", Field and Service Robotics.
- Ekkachai, K., Tantaworrasilp, A., Nithi-Uthai, S., Tungpimolrut, K. and Nilkhamhang, I. (2014), "Variable walking speed controller of MR damper prosthetic knee using neural network predictive control", Proceedings of the SICE Annual Conference (SICE), Sapporo, Japan, September.
- Gordaninejad, F. and Kelso, S.P. (2000), "Fail-safe magnetorheological fluid dampers for off-highway, high-payload vehicles", J. Intel. Mat. Syst. Str., 11(5), 395-406. https://doi.org/10.1106/K90W-1A63-7QA7-6EH4
- Hato, M.J., Choi, H.J., Sim, H.H., Park, B.O. and Ray, S.S. (2011), "Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties", Colloid. Surface. A, 377(1), 103-109. https://doi.org/10.1016/j.colsurfa.2010.12.029
- Huang, J., Zhang, J., Yang, Y. and Wei, Y. (2002), "Analysis and design of a cylindrical magneto-rheological fluid brake", J. Mater. Process. Technol., 129(1), 559-562. https://doi.org/10.1016/S0924-0136(02)00634-9
- Kim, J.H. and Oh, J.H. (2001), "Development of an above knee prosthesis using MR damper and leg simulator", Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea.
- Kwak, M.K., Lee, J.H., Yang, D.H. and You, W.H. (2014), "Hardware-in-the-loop simulation experiment for semi-active vibration control of lateral vibrations of railway vehicle by magneto-rheological fluid damper", Vehicle Syst. Dyn., 52(7), 891-908. doi: 10.1080/00423114.2014.906631
- Makihara, K., Kuroishi, C. and Fukunaga, H. (2013), "Adaptive multimodal vibration suppression using fuzzy-based control with limited structural data", Smart Mater. Struct., 22(7), 075031. https://doi.org/10.1088/0964-1726/22/7/075031
- Mazlan, S., Ekreem, N.B. and Olabi, A. (2007), "The performance of magnetorheological fluid in squeeze mode", Smart Mater. Struct., 16(5), 1678. https://doi.org/10.1088/0964-1726/16/5/021
- Najmaei, N., Kermani, M.R. and Patel, R.V. (2015), "Suitability of small-scale magnetorheological fluid-based clutches in haptic interfaces for improved performance", IEEE/ASME T. Mechatron., 20(4), 1863-1874. https://doi.org/10.1109/TMECH.2014.2357447
- Nakano, H. and Nakano, M. (2014), "Evaluation and training system of muscle strength for leg rehabilitation utilizing an MR fluid active loading machine", Field and Service Robotics.
- Yin, X., Guo, S., Xiao, N., Tamiya, T., Hirata, H. and Ishihara, H. (2016), "Safety operation consciousness realization of a MR fluids-based novel haptic interface for teleoperated catheter minimally invasive neurosurgery", IEEE/ASME T. Mechatron., 21(2), 1043-1054. https://doi.org/10.1109/TMECH.2015.2489219
-
Zong, L.H., Gong, X.L., Xuan, S.H. and Guo, C.Y. (2013), "Semiactive
$H_{\infty}$ control of high-speed railway vehicle suspension with magnetorheological dampers", Vehicle Syst. Dyn., 51(5), 600-626. https://doi.org/10.1080/00423114.2012.758858
Cited by
- Development of a Magnetorheological Damper of the Micro-vibration Using Fuzzy PID Algorithm pp.2191-4281, 2018, https://doi.org/10.1007/s13369-018-3464-z
- Low-Frequency Performance Analysis of Semi-Active Cab’s Hydraulic Mounts of an Off-Road Vibratory Roller vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/8725382
- Influence characteristics of electrical parameters and vibration isolation properties of the stretcher system based on parallel mechanism and self-powered magneto-rheological damper vol.26, pp.7, 2017, https://doi.org/10.1177/1077546319889847