DOI QR코드

DOI QR Code

Planar Curve Smoothing with Individual Weighted Averaging

개별적 가중치 평균을 이용한 2차원 곡선의 스무딩

  • 류승필 (세명대학교 컴퓨터학부)
  • Received : 2017.08.21
  • Accepted : 2017.09.18
  • Published : 2017.11.15

Abstract

A traditional average smoothing method is designed for smoothing out noise, which, however, unintentionally results in smooth corner points on the curvature accompanied with a shrinkage of curves. In this paper, we propose a novel curve smoothing method via polygonal approximation of the input curve. The proposed method determines the smoothing weight for each point of the input curve based on the angle and approximation error between the approximated polygon and the input curve. The weight constrains a displacement of the point after smoothing not to significantly exceed the average noise error of the region. In the experiment, we observed that the resulting smoothed curve is close to the original curve since the point moves toward the average position of the noise after smoothing. As an application to digital cartography, for the same amount of smoothing, the proposed method yields a less area reduction even on small curve segments than the existing smoothing methods.

잡음제거에 많이 사용되는 평균 스무딩 방법은 곡률이 큰 코너와 잡음을 구분하지 못하므로 코너와 같은 특징점이 이동하거나 없어질 수 있고, 또한 곡선의 수축(shrinking)으로 곡선 내의 면적 오차가 커지는 문제점들이 있다. 이 논문에서는 입력곡선을 다각형 근사화하고 근사화된 다각형의 정보를 스무딩에 이용하여 이 문제점들을 완화시키는 방법을 제안한다. 제안된 방법은 근사화된 다각형과 입력곡선간의 오차와 다각형의 꼭짓점 각도를 이용하여 입력곡선의 각 점마다 개별적으로 스무딩 가중치를 정한다. 이 때 각 점의 가중치는 스무딩 후 점의 이동거리가 그 지역의 잡음크기의 평균에 가까워지도록 정해진다. 제안된 방법으로 잡음이 추가된 곡선을 스무딩하면 스무딩된 곡선이 잡음이 없는 원래곡선에 근접함을 실험으로 확인할 수 있다. 또한 크기가 작은 폐곡선들에 대해 스무딩의 정도를 늘여도 제안된 방법은 기존의 평균 스무딩 방법에 비해 곡선의 면적 축소가 많지 않다.

Keywords

Acknowledgement

Supported by : 세명대학교

References

  1. D. Lowe, "Organization of smooth image curves at multiple scales," International Journal of Computer Vision, Vol. 3, No. 2, pp. 119-130, 1989. https://doi.org/10.1007/BF00126428
  2. G. Taubin, "Curve and surface smoothing without shrinkage," Proc. IEEE International Conference on Computer Vision, pp. 852-857, 1995.
  3. J. Oliensis, "Local reproducible smoothing without shrinkage," IEEE Transaction on Pattern Recognition and Machine Intelligence, Vol. 15, No. 3, pp. 307-312, Mar. 1993. https://doi.org/10.1109/34.204914
  4. R. Legault and C. Suen, "Optimal local weighted averaging methods in contour smoothing," IEEE Transaction on Pattern Recognition and Machine Intelligence, Vol. 19, No. 8, pp. 801-817, Aug. 1997. https://doi.org/10.1109/34.608276
  5. F. Mokhtarian and A. Mackworth, "A theory of multiscale, curvature-based shape representation for planar curves," IEEE Transaction on Pattern Recognition and Machine Intelligence, Vol. 14, No. 8, pp. 789-805, 1992. https://doi.org/10.1109/34.149591
  6. B. Zhong, and K. Ma, "On the convergence of planar curves under smoothing," IEEE Transaction on Image Processing, Vol. 19, No. 8, pp. 2171-2189, Aug. 2010. https://doi.org/10.1109/TIP.2010.2046807
  7. M. Mansouryar and A. Hedayati, "Smoothing via iterative averaging (SIA) a basic technique for line smoothing," International Journal of Computer & Electrical Engineering, Vol. 4, pp. 307-311, Jun. 2012.
  8. S. Lyu, "Smoothing Method for Digital Curve by Iterative Averaging with Controllable Error," Journal of KIISE : Software and Applications, Vol. 42, No. 6, 2015. (in Korean)
  9. A. Saalfeld, "Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm," Cartography and Geographic Information Science, Vol. 26, No. 1, pp. 7-18, 1999. https://doi.org/10.1559/152304099782424901
  10. M. Abam, M. DeBerg, P. Hachenberger and A. Zarei, "Streaming algorithms for line simplication," Discrete & Computational Geometry, Vol. 43, No. 3, pp. 497-515, 2010. https://doi.org/10.1007/s00454-008-9132-4
  11. J. Sklansky, "Measuring concavity on a rectangular mosaic," IEEE Transaction on Computers, Vol. 21, pp. 1355-1364, 1972.
  12. E. Aguilera, et. al., "The computation of polygonal approximations for 2d contours based on a concavity tree," Journal of Visual Communication and Image Representation, 25, pp. 1905-1917, 2014. https://doi.org/10.1016/j.jvcir.2014.09.012
  13. F. Cuevas, et. al., "An efficient unsupervised method for obtaining polygonal approximations of closed digital planar curves," Journal of Visual Communication and Image Representation, 39, pp. 152-163, 2016. https://doi.org/10.1016/j.jvcir.2016.05.021
  14. MPEG-7 Core Experiment CE-Shape-1 Test Set, publicly available at http://www.dabi.temple.edu/-shape/MPEG7/dataset.html
  15. OpenStreetMap, 2004. http://www.openstreetmaps.org.
  16. A. Bruckstein, A. Katzir Nir, M. Lindenbaum and M. Porat, "Similarity-invariant signatures for partially occluded planar shapes," International Journal of Computer Vision, Vol. 7, pp. 271-285, 1992. https://doi.org/10.1007/BF00126396
  17. A. Pikaz and I. Dinstein, "Using simple decomposition for smoothing and feature point detection of noisy digital curves," IEEE Transaction on Pattern Recognition and Machine Intelligence, Vol. 16, No. 8, pp. 808-813, 1994. https://doi.org/10.1109/34.308476