예비초등교사교육을 위한 효과적인 과제로서 "두 자료집합 비교하기" 과제의 가능성 탐색

A Study on "Comparing Two Data Sets" as Effective Tasks for the Education of Pre-Service Elementary Teachers

  • 투고 : 2017.11.08
  • 심사 : 2017.12.14
  • 발행 : 2017.12.29

초록

교사의 통계적 추론과 사고를 개발하는 것은 예비교사 대상의 통계교육에서 이루어져야 하는 중요한 역할이다. 본 연구에서는 특히, 예비초등교사들이 통계의 핵심 아이디어에 대한 추론을 발달시키기 위한 방안으로서 두 자료집합 비교하기 과제의 활용에 주목하였다. 24명의 예비초등교사들이 4명씩 6개 모둠으로 과제를 수행하고 이를 발표하게 함으로써 자료를 수집하였고, 두 자료집합 비교 활동에서 확인된 Pfannkuch(2006)의 추론 모델을 바탕으로 이를 분석하였다. 분석 결과, 연구 참여자들은 두 자료집합 비교하기 과제를 통해 통계적 문제해결을 위해 분포와 변이성에 주목하였고, 의사결정을 위해 맥락적 지식을 고려하는 모습을 보였다. 또한, 통계적 의사소통을 위한 주된 참조물로서 통계량과 그래프를 활용하였는데, 이는 절차적 지식에 고착화된 전통적 통계교육을 개선하기 위한 주요한 시사점을 제공할 수 있을 것으로 기대된다. 이를 통해, 두 자료집합 비교하기 과제가 예비초등교사교육에서 지니는 가능성을 확인함과 동시에 활용 방안에 대한 제언을 도출하였다.

It is an important to develop teachers' statistical reasoning or thinking by teacher education. In this study, the "comparing two data sets" tasks is focused as a way to develop pre-service elementary teachers' reasoning about core ideas of statistics such as distribution, variability, center, and spread. 6 teams of each 4 pre-service elementary teachers participated on the tasks and their presentations are analyzed based on Pfannkuch's (2006) teachers' inference model in comparing two data sets. As a result, they paid attention to the distribution and variability in the statistical problem solving by the "comparing two data sets" tasks, and used their contextual knowledge to make a statistical decision. In addition, they used some statistics and graphs as the reference for statistical communication, which is expected to provide implications for improving statistical education. The finding implies that the "comparing two data sets" tasks can be used to develop statistical reasoning of pre-service elementary teachers. Some recommendations are suggested for teacher education by these tasks.

키워드

참고문헌

  1. 고은성, 이경화(2010). 예비교사들의 무작위성 개념 이해 조사. 학교수학, 12(4), 455-471.
  2. 고은성, 이경화(2011). 예비교사들의 통계적 표집에 대한 이해. 수학교육학연구, 21(1), 17-32.
  3. 교육부(2015). 수학과 교육과정. 교육부 고시 제2015-74호 [별책 8].
  4. 김선희, 이종희(2003). 통계 자료의 정리와 표현 에서 중학생들의 기호화와 해석화 과정 분석. 수학교육학연구, 13(4), 463-483.
  5. 남주현(2007). 초.중등 통계교육을 위한 통계적 방법론에 대한 연구. 이화여자대학교 대학원 박사학위논문.
  6. 박민선(2015). 비형식적 통계적 추리의 평가. 서울대학교 대학원 박사학위논문.
  7. 박민선, 박미미, 이경화, 고은성(2011). 자료집합 비교 활동에서 나타나는 중학교 학생들의 통계적 추리에 대한 연구. 학교수학, 13(4), 599-614.
  8. 박영희(2001). 통계 영역에서 대푯값의 의미와 지도에 관한 고찰. 학교수학, 3(2), 281-294.
  9. 우정호(2000). 통계교육의 개선방향 탐색. 학교수학, 2(1), 1-27.
  10. 윤형주, 고은성, 유연주(2012). 중학생들의 자료와 그래프의 선택과 해석에서 측정과 척도에 근거한 비판적 사고 연구. 수학교육학연구, 22(2), 137-162.
  11. 이경화(2015). 우리나라 초중고 통계교육의 실제와 방향. 통계청(편.). 미래사회, 이제 통계적 소양이다. (pp. 27-43). 대전: 한국통계진흥원.
  12. 이경화, 구나영(2015). 확률과 통계 영역에서 공학의 활용. 고상숙(편.). 수학교육에서 공학적 도구 (pp. 285-313). 서울: 경문사.
  13. 이영하, 최지안(2008). 중학교 1학년 통계단원에 나타난 분포개념에 관한 분석. 수학교육학연구, 18(3), 407-434.
  14. 탁병주(2017). 통계적 소양 교육을 위한 예비교사의 통계 교수 지식 연구: 표본 개념 지도에서의 활용을 중심으로. 서울대학교 대학원 박사학위논문.
  15. 탁병주, 구나영, 강현영, 이경화(2017). 중등수학 예비교사들의 통계적 소양: 표본 개념에 대한 이해를 중심으로. 수학교육, 56(1), 19-39.
  16. 황현미, 방정숙(2007). 초등학교 6학년 학생들의 그래프 이해 능력 실태 조사. 학교수학, 9(1), 45-64.
  17. Abelson, R. (1995). Statistics as principled argument. Hillsdale, NJ: Erlbaum.
  18. Bakker, A. & Gravemeijer, K. P. E. (2004). 분포 에 대한 추론. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 175-200). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  19. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  20. Baturo, A., Cooper, T., Doyle, K., & Grant, E. (2007). Using three levels in design of effective teacher-education tasks: The case of promoting conflicts with intuitive understandings in probability. Journal of Mathematics Teacher Education, 10(4-6), 251-259. https://doi.org/10.1007/s10857-007-9042-z
  21. Ben-Zvi, D. & Garfield, J. (2010). 통계적 사고의 의미와 교육 (이경화 외 9인 역.). 서울: 경문사. (영어 원작은 2004년 출판)
  22. Franklin, C. A., Kader, G. D., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education report. Alexandria: American Statistical Association.
  23. Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1-25. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  24. Guberman, R., & Leikin, R. (2013). Interesting and difficult mathematical problems: Changing teachers' views by employing multiple-solution tasks. Journal of Mathematics Teacher Education, 16(1), 33-56. https://doi.org/10.1007/s10857-012-9210-7
  25. Hoaglund, A., Birkenfeld, K., & Box, J. (2014). Professional learning communities: Creating a foundation for collaboration skills in pre-service teachers. Education, 134(4), 521-528.
  26. Kader, G. D., Jacobbe, T., Wilson, P. S., Zbiek, R. M. (2013). Developing essential understanding of statistics for teaching mathematics in grades 6-8. Reston, VA: NCTM.
  27. Konold, C., & Higgins, T. (2002). Highlights of related research. In S. J. Russell, D. Schifter, & V. Bastable (Eds.), Developing Mathematical Ideas: Working with Data (pp. 165-201). Parsippany, NJ: Seymour Publications.
  28. Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259-289. https://doi.org/10.2307/749741
  29. Kullberg, A. (2010). What is taught and what is learned: Professional insights gained and shared by teachers of mathematics. Ph. D. Dissetation, Acta Universitatis Gothoburgensis.
  30. Lehrer, R., & Schauble, L. (2002). Investigation real data in the classroom: Expanding children's understanding of math and science. New York: Teachers College Press.
  31. Makar, K., & Confrey, J. (2002). Comparing two distributions: Investigating secondary teachers' statistical thinking. Paper presented at the Sixth International Conference on Teaching Statistics: Developing a statistically literate society, Cape Town, South Africa.
  32. Makar, K., & Confrey, J. (2010). 중등학교 교사들의 통계적 추론: 두 집단 비교를 중심으로. In D. Ben-Zvi & J. Garfield (Eds.). 통계적 사고의 의미와 교육 (이경화 외 9인 역.) (pp. 419-443). 서울: 경문사. (영어 원작은 2004년 출판)
  33. Mallows, C. (1998). The zeroth problem. The American Statistician, 52, 1-9.
  34. Moore, D. S. (1990). Uncertainty. In L. A. Steen (Ed.), On the shoulders of giants (pp. 95-137). Washington, DC: National Academy Press.
  35. Pfannkuch, M. (2005). Probability and statistical inference: How can teachers enable learners to make the connection? In G. Jones (Ed.). Exploring probability in school: Challenges for teaching and learning. (pp. 267-294). Dordrecht, The Netherlands, Kluwer Academic Publishers.
  36. Pfannkuch, M. (2006). Comparing box plot distributions: A teacher's reasoning. Statistics Education Research Journal, 5(2), 27-45.
  37. Reading, C., & Canada, D. (2011). Teachers' knowledge of distribution. In C. Batanero, G. Burrill, & C. Reading (Eds.). Teaching statistics in school mathematics - Chanllenges for teaching and teacher education. (pp. 223-234). Dordrecht: Springer.
  38. Reading, C. & Shaughnessy, J. M. (2004). Reasoning about variation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 201-226). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  39. Rossman, A., Chance, B., & Medina, E. (2006). Some important comparisons between statistics and mathematics, and why teachers should care. In G. F. Burrill & P. C. Elliott (Eds.), Thinking and reasoning with data and chance: Sixty-eighth yearbook (pp. 323-333). Reston, VA: NCTM.
  40. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  41. Silva, C., & Coutinho, C. (2008). Reasoning about variation of a univariate distribution: a study with secondary mathematics teachers. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.). Joint ICMI/IASE study: Teaching statistics in school mathematics. Challenges for teaching and teacher education. Proceedings of the ICMI Study, 18, 1-8.
  42. Snee, R. D. (1990). Statistical thinking and its contribution to total quality. The American Statistician, 44(2), 116-121. https://doi.org/10.2307/2684144
  43. Sullivan, P., Askew, M., Cheeseman, J., Clarke, D., Mornane, A., Roche, A., & Walker, N. (2015). Supporting teachers in structuring mathematics lessons involving challenging tasks. Journal of Mathematics Teacher Education, 18(2), 123-140. https://doi.org/10.1007/s10857-014-9279-2
  44. Sullivan, P., Clarke, D., & Clarke, B. (2016). 수학 수업 이야기: 수학, 과제, 학습의 삼중주 (이경화, 김동원 역.). 서울: 경문사. (영어 원작은 2013년 출판).
  45. Watson, J. M. (2008). Exploring beginning inference with novice grade 7 students. Statistical Education Research Journal, 7(2), 59-82.
  46. Watson, J. M. (2010). 표본에 대한 추론. In D. Ben-Zvi & J. Garfield (Eds.). 통계적 사고의 의미와 교육 (이경화 외 9인 역.) (pp. 329-351). 서울: 경문사. (영어 원작은 2004년 출판)
  47. Watson, J. M. (2013). 학교에서 어떤 통계를 배워야 하지?: 통계적 소양의 성장과 목표 (박영희 역.). 서울: 경문사. (영어 원작은 2006년 출판)
  48. Wild, C. J. (2006). The concept of distribution. Statistics Education Research Journal, 5(2), 10-26.
  49. Wild, C. J. & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223-265. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x