DOI QR코드

DOI QR Code

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Received : 2017.04.27
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

Keywords

References

  1. Abdel-Aziz, Y. I. & Karara, H. M. (1971). Direct liner transformation from comparator into object space coordinates inclose-range photogrammetry. Proceeding of the Symposium on close-range Photogrammetry (1-18). Falls church, VA: American society of photogrammetry.
  2. Alexander, R. (1980). Optimum walking techniques for quadrupeds and bipeds. Journal of Zoology, 192(1), 97-117. https://doi.org/10.1111/j.1469-7998.1980.tb04222.x
  3. Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69(4), 1199-1227. https://doi.org/10.1152/physrev.1989.69.4.1199
  4. Alexander, R. M. (1992). A model of bipedal locomotion on compliant legs. Philosophical Transactions of the Royal Society B: Biological Sciences, 338(1284), 189-198. https://doi.org/10.1098/rstb.1992.0138
  5. Arampatzis, A., Brüggemann, G. P. & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353. https://doi.org/10.1016/S0021-9290(99)00133-5
  6. Asmussen, E. & Bonde-Petersen, F. (1974). Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiologica Scandinavica, 92(4), 537-545. https://doi.org/10.1111/j.1748-1716.1974.tb05776.x
  7. Bishop, M., Fiolkowski, P., Conrad, B., Brunt, D. & Horodyski, M. (2006). Athletic footwear, leg stiffness, and running kinematics. Journal of Athletic Training, 41(4), 387.
  8. Blum, Y., Lipfert, S. W. & Seyfarth, A. (2009). Effective leg stiffness in running. Journal of Biomechanics, 42(14), 2400-2405. https://doi.org/10.1016/j.jbiomech.2009.06.040
  9. Bovens, A. M. P., Janssen, G. M. E., Vermeer, H. G. W., Hoeberigs, J. H., Janssen, M. P. E. & Verstappen, F. T. J. (1989). Occurrence of running injuries in adults following a supervised training program. International Journal of Sports Medicine, 10(3), 186-190. https://doi.org/10.1055/s-2007-1024970
  10. Bullimore, S. R. & Burn, J. F. (2006). Consequences of forward translation of the point of force application for the mechanics of running. Journal of Theoretical Biology, 238(1), 211-219. https://doi.org/10.1016/j.jtbi.2005.05.011
  11. Butler, R. J., Crowell, H. P. & Davis, I. M. (2003). Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18, 511-517. https://doi.org/10.1016/S0268-0033(03)00071-8
  12. Cappellini, G., Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 3426-3437. https://doi.org/10.1152/jn.00081.2006
  13. Cheung, R. T. & Rainbow, M. J. (2014). Landing pattern and vertical loading rates during first attempt of barefoot running in habitual shod runners. Human Movement Science, 34, 120-127. https://doi.org/10.1016/j.humov.2014.01.006
  14. Cook, T. M., Farrell, K. P., Carey, I. A., Gibbs, J. M. & Wiger, G. E. (1997). Effects of restricted knee flexion and walking speed on the vertical ground reaction force during gait. Journal of Orthopaedic & Sports Physical Therapy, 25(4), 236-244. https://doi.org/10.2519/jospt.1997.25.4.236
  15. Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L. & Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37(8), 757-767. https://doi.org/10.1109/10.102791
  16. Donelan, J. M. & Kram, R. (2000). Exploring dynamic similarity in human running using simulated reduced gravity. Journal of Experimental Biology, 203(16), 2405-2415.
  17. Dutto, D. J. & Smith, G. A. (2002). Changes in spring-mass characteristics during treadmill running to exhaustion. Medicine and Science in Sports and Exercise, 34(8), 1324-1331. https://doi.org/10.1097/00005768-200208000-00014
  18. Farley, C. T. & Gonzalez, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29(2), 181-186. https://doi.org/10.1016/0021-9290(95)00029-1
  19. Farley, C. T., Blickhan, R., Saito, J. & Taylor, C. R. (1991). Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology, 71(6), 2127-2132. https://doi.org/10.1152/jappl.1991.71.6.2127
  20. Farley, C. T., Glasheen, J. & McMahon, T. A. (1993). Running springs: speed and animal size. Journal of Experimental Biology, 185(1), 71-86.
  21. Feehery Jr, R. V. (1986). The biomechanics of running on different surfaces. Clinics in Podiatric Medicine and Surgery, 3(4), 649-659.
  22. Ferris, D. P., Louie, M. & Farley, C. T. (1998). Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society of London B: Biological Sciences, 265(1400), 989-994. https://doi.org/10.1098/rspb.1998.0388
  23. Grimston, S. K., Engsberg, J. R., Kloiber, R. & Hanley, D. A. (1991). Bone mass, external loads, and stress fracture in female runners. International Journal of Sport Biomechanics, 7(3), 293-302. https://doi.org/10.1123/ijsb.7.3.293
  24. Hargrave, M. D., Carcia, C. R., Gansneder, B. M. & Shultz, S. J. (2003). Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training, 38(1), 18.
  25. He, J. P., Kram, R. & McMahon, T. A. (1991). Mechanics of running under simulated low gravity. Journal of Applied Physiology, 71(3), 863-870. https://doi.org/10.1152/jappl.1991.71.3.863
  26. Hennig, E. M. & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. International Journal of Sport Biomechanics, 7(3), 303-309. https://doi.org/10.1123/ijsb.7.3.303
  27. Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V. & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes a prospective study. The American Journal of Sports Medicine, 27(6), 699-706. https://doi.org/10.1177/03635465990270060301
  28. Hortobagyi, T., Finch, A., Solnik, S., Rider, P. & DeVita, P. (2011). Association between muscle activation and metabolic cost of walking in young and old adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66(5), 541-547.
  29. Hyun, S. H. & Ryew, C. C. (2016). Relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Korean Journal of Sport Biomechanics, 26(3), 249-255. https://doi.org/10.5103/KJSB.2016.26.3.249
  30. Kerdok, A. E., Biewener, A. A., McMahon, T. A., Weyand, P. G. & Herr, H. M. (2002). Energetics and mechanics of human running on surfaces of different stiffnesses. Journal of Applied Physiology, 92(2), 469-478. https://doi.org/10.1152/japplphysiol.01164.2000
  31. Kuitunen, S., Komi, P. V., & Kyrolainen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise, 34(1), 166-173. https://doi.org/10.1097/00005768-200201000-00025
  32. Lipfert, S. W., Günther, M., Renjewski, D., Grimmer, S. & Seyfarth, A. (2012). A model-experiment comparison of system dynamics for human walking and running. Journal of Theoretical Biology, 292, 11-17. https://doi.org/10.1016/j.jtbi.2011.09.021
  33. Luhtanen, P. & Komi, P. V. (1980). Force-, power-, and elasticity-velocity relationships in walking, running, and jumping. European Journal of Applied Physiology and Occupational Physiology, 44(3), 279-289. https://doi.org/10.1007/BF00421627
  34. McMahon, T. A. & Cheng, G. C. (1990). The mechanics of running: how does stiffness couple with speed?. Journal of Biomechanics, 23, 65-78. https://doi.org/10.1016/0021-9290(90)90042-2
  35. McMahon, T. A., Valiant, G. & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology, 62(6), 2326-2337. https://doi.org/10.1152/jappl.1987.62.6.2326
  36. Mero, A. & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553-561. https://doi.org/10.1007/BF00421652
  37. Plagenhoef, S. C., Evans, F. G. & Abdelnour, T. (1983). Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport, 54(2), 632-635.
  38. Ryu, J. S. (2013). Effect of a prolonged-run-induced fatigue on the ground reaction force components. Korean Journal of Sport Biomechanics, 23(3), 225-233. https://doi.org/10.5103/KJSB.2013.23.3.225
  39. Ryu, J. S. (2014). Variability of GRF components between increased running times during prolonged run. Korean Journal of Sport Biomechanics, 24(4), 359-365. https://doi.org/10.5103/KJSB.2014.24.4.359
  40. Ryu, J. S. (2015). Impact shock components and attenuation in flat foot running. Korean Journal of Sport Biomechanics, 25(3), 283-291. https://doi.org/10.5103/KJSB.2015.25.3.283
  41. Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D. & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine and Science in Sports and Exercise, 43(7), 1260-1271. https://doi.org/10.1249/MSS.0b013e3182084929
  42. Seyfarth, A., Geyer, H., Gunther, M. & Blickhan, R. (2002). A movement criterion for running. Journal of Biomechanics, 35(5), 649-655. https://doi.org/10.1016/S0021-9290(01)00245-7
  43. Silder, A., Besier, T. & Delp, S. (2015). Running with a load increases leg stiffness. Journal of Biomechanics, 48(6), 1003-1008. https://doi.org/10.1016/j.jbiomech.2015.01.051
  44. Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S. & Delp, S. L. (2010). Muscle contributions to support and progression during singlelimb stance in crouch gait. Journal of Biomechanics, 43(11), 2099-2105. https://doi.org/10.1016/j.jbiomech.2010.04.003
  45. Stefanyshyn, D. J. & Nigg, B. M. (1998). Dynamic angular stiffness of the ankle joint during running and sprinting. Journal of Applied Biomechanics, 14(3), 292-299. https://doi.org/10.1123/jab.14.3.292
  46. Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R. & Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101. https://doi.org/10.1136/bjsm.36.2.95
  47. Taylor, C. R., Heglund, N. C. & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97(1), 1-21.
  48. Teunissen, L. P., Grabowski, A. & Kram, R. (2007). Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 210(24), 4418-4427. https://doi.org/10.1242/jeb.004481
  49. van Gent, B. R., Siem, D. D., van Middelkoop, M., van Os, T. A., Bierma- Zeinstra, S. S. & Koes, B. B. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British Journal of Sports Medicine, 41(9), 169-480.
  50. Watson, M. D. (1987). Incidence of injuries in high school track and field athletes and its relation to performance ability. The American Journal of Sports Medicine, 15(3), 251-254. https://doi.org/10.1177/036354658701500310
  51. Williams, P. T. (2009a). Lower prevalence of hypertension, hypercholesterolemia, and diabetes in marathoners. Medicine and Science in Sports and Exercise, 41(3), 523. https://doi.org/10.1249/MSS.0b013e31818c1752
  52. Williams, P. T. (2009b). Reduction in incident stroke risk with vigorous physical activity. Stroke, 40(5), 1921-1923. https://doi.org/10.1161/STROKEAHA.108.535427
  53. Wit, B. D., Clercq, D. D. & Lenoir, M. (1995). The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. Journal of Applied Biomechanics, 11(4), 395-406. https://doi.org/10.1123/jab.11.4.395