References
- Aksu, G. and Al-Kaabi, S.A. (1987), "Free vibration analysis of Mindlin plates with linearly varying thickness", J. Sound Vib., 119(2), 189-205. https://doi.org/10.1016/0022-460X(87)90448-2
- Algazin, S.D. (2010), "Numerical algorithms of classical mathematical physics", Dialog-MIFI, Moscow.
- Bert, C.W. and Malik, M. (1996), "Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach", J. Sound Vib., 190(1), 41-63. https://doi.org/10.1006/jsvi.1996.0046
- Bhat, R.B., Laura, P.A., Gutierrez, R.G., Cortinez, V.H. and Sanzi, H.C. (1990), "Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness", J. Sound Vib., 138(2), 205-219. https://doi.org/10.1016/0022-460X(90)90538-B
- Chakraverty, S. (2008), Vibration of plates, CRC press.
- Cheung, K.Y. and Zhou, D. (1999a), "The free vibrations of tapered rectangular plates using a new set of beam functions with the Rayleigh-Ritz method", J. Sound Vib., 223(5), 703-722. https://doi.org/10.1006/jsvi.1998.2160
- Cheung, Y.K. and Ding, Z. (1999b), "Eigenfrequencies of tapered rectangular plates with intermediate line supports", Int. J. Solids Struct., 36(1), 143-166. https://doi.org/10.1016/S0020-7683(97)00272-2
- Cheung, Y.K. and Zhou, D. (2003), "Vibration of tapered Mindlin plates in terms of static Timoshenko beam functions", J. Sound Vib., 260(4), 693-709. https://doi.org/10.1016/S0022-460X(02)01008-8
- Dalir, M.A. and Shooshtari, A. (2015), "Exact mathematical solution for free vibration of thick laminated plates", Struct. Eng. Mech., 56(5), 835-854. https://doi.org/10.12989/sem.2015.56.5.835
- Fantuzzi, N., Bacciocchi, M., Tornabene, F., Viola, E. and Ferreira, A.J. (2015), "Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates", Compos. Part B-Eng., 78, 65-78. https://doi.org/10.1016/j.compositesb.2015.03.027
- Jin, G., Ye, T., Jia, X. and Gao, S. (2014), "A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints", Compos. Struct., 109, 150-168. https://doi.org/10.1016/j.compstruct.2013.10.052
- Kalita, K. and Haldar, S. (2015), "Parametric study on thick plate vibration using FSDT", Mech. Mechanic. Eng., 19(2), 81-90.
- Kalita, K. and Haldar, S. (2016), "Free vibration analysis of rectangular plates with central cutout", Cogent Eng., 3(1), 1163781.
- Kandelousi, M.S. (2014), "Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition", Eur. Phys. J. Plus, 129(11), 1-12. https://doi.org/10.1140/epjp/i2014-14001-y
- Kirchhoff, G. (1850), "Ueber die Schwingungen einer kreisf\"ormigen elastischen Scheibe", Annalen der Physik, 157(10), 258-264. https://doi.org/10.1002/andp.18501571005
- Kirchhoff, G.R. (1850), Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe.
- Larrondo, H.A., Avalos, D.R., Laura, P.A. and Rossi, R.E. (2001), "Vibrations of simply supported rectangular plates with varying thickness and same aspect ratio cutouts", J. Sound Vib., 244(4), 738-745. https://doi.org/10.1006/jsvi.2000.3492
- Lee, W.M. and Chen, J.T. (2010), "Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method", Int. J. Solids Struct., 47(9), 1118-1129. https://doi.org/10.1016/j.ijsolstr.2009.12.002
- Lee, W.M., Chen, J.T. and Lee, Y.T. (2007), "Free vibration analysis of circular plates with multiple circular holes using indirect BIEMs", J. Sound Vib., 304(3), 811-830. https://doi.org/10.1016/j.jsv.2007.03.026
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Research on thick plate vibration: a literature survey", J. Sound Vib., 180(1), 163-176. https://doi.org/10.1006/jsvi.1995.0072
- Majumdar, A., Manna, M.C. and Haldar, S. (2010), "Bending of skewed cylindrical shell panels", Int. J. Comput. Appl., 1(8), 89-93. https://doi.org/10.5120/175-302
- Manna, M.C. (2006), "A sub-parametric shear deformable element for free vibration analysis of thick/thin rectangular plates with tapered thickness", Appl. Mech. Eng., 11(4), 901.
- Manna, M.C. (2011), "Free vibration of tapered isotropic rectangular plates", J. Vib. Control, 18(1), 76-91. https://doi.org/10.1177/1077546310396800
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates".
- Mlzusawa, T. (1993), "Vibration of rectangular Mindlin plates with tapered thickness by the spline strip method", Comput. Struct., 46(3), 451-463. https://doi.org/10.1016/0045-7949(93)90215-Y
- Ozdemir, Y.I. and Ayvaz, Y. (2014), "Is it shear locking or mesh refinement problem?", Struct. Eng. Mech., 50(2), 181-199. https://doi.org/10.12989/sem.2014.50.2.181
- Pachenari, Z. and Attarnejad, R. (2014), "Analysis of Tapered Thin Plates Using Basic Displacement Functions", Arab J. Sci. Eng., 39(12), 8691-8708. https://doi.org/10.1007/s13369-014-1407-x
- Pachenari, Z. and Attarnejad, R. (2014), "Free vibration of tapered mindlin plates using basic displacement functions", Arab J. Sci. Eng., 39(6), 4433-4449. https://doi.org/10.1007/s13369-014-1071-1
- Pandit, M.K., Haldar, S. and Mukhopadhyay, M. (2007), "Free vibration analysis of laminated composite rectangular plate using finite element method", J. Reinf. Plast. Comp., 26(1), 69-80. https://doi.org/10.1177/0731684407069955
- Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys. Camb., 23(1), 184-191. https://doi.org/10.1002/sapm1944231184
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates".
- Saeedi, K., Leo, A., Bhat, R.B. and Stiharu, I. (2012), "Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method", J. Mech. Sci. Technol., 26(5), 1439-1448. https://doi.org/10.1007/s12206-012-0325-7
- Sahoo, S. (2015), "Laminated composite stiffened cylindrical shell panels with cutouts under free vibration", Int. J. Manufact., Mater., Mech. Eng. (IJMMME), 5(3), 37-63. https://doi.org/10.4018/IJMMME.2015070103
- Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higherorder shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005
- Ye, T., Jin, G., Chen, Y., Ma, X. and Su, Z. (2013), "Free vibration analysis of laminated composite shallow shells with general elastic boundaries", Compos. Struct., 106, 470-490. https://doi.org/10.1016/j.compstruct.2013.07.005
- Ye, T., Jin, G., Su, Z. and Chen, Y. (2014), "A modified Fourier solution for vibration analysis of moderately thick laminated plates with general boundary restraints and internal line supports", Int. J. Mech. Sci., 80, 29-46. https://doi.org/10.1016/j.ijmecsci.2014.01.001
- Zhou, D. (2002), "Vibrations of point-supported rectangular plates with variable thickness using a set of static tapered beam functions", Int. J. Mech. Sci., 44(1), 149-164. https://doi.org/10.1016/S0020-7403(01)00081-9