참고문헌
- Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional viscoelastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29(6), 673-687. https://doi.org/10.12989/sem.2008.29.6.673
- Caputo, M. and Mainardi, F. (1971) "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(1), 134-147. https://doi.org/10.1007/BF00879562
- Caputo, M. (1974), "Vibrations of an infinite viscoelastic layer with a dissipative memory", J. Acous. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
- Cattaneo, C. (1958), "Sur une forme de l‟equation de la chaleur elinant le paradoxes d‟une propagation instantance", C.R. Acad. Sci., 247, 431-432.
- Chandrasekharaiah, D.S. (1986), "Thermoelasticty with second sound: A review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
- Das, P. and Kanoria, M. (2012), "Magneto-thermoelastic response in a perfectly conducting medium with three-phase-lag effect", Acta Mech., 223(4), 811-828. https://doi.org/10.1007/s00707-011-0591-y
- Deswal, S. and Kalkal, K. (2011), "A two-dimensional generalized electro-magneto-thermo-viscoelastic problem for a half-space with diffusion", Int. J. Therm. Sci., 50(5), 749-759. https://doi.org/10.1016/j.ijthermalsci.2010.11.016
- Deswal, S., Sheoran, S.S. and Kalkal K.K. (2013), "A twodimensional problem in magneto-thermoelasticity with laser pulse under different boundary conditions", J. Mech. Mater. Struct., 8(8), 441-459. https://doi.org/10.2140/jomms.2013.8.441
- Deswal, S. and Yadav, R. (2014), "Thermodynamic behaviour of microstretch viscoelastic solids with internal heat source", Can. J. Phys., 92(5), 425-434. https://doi.org/10.1139/cjp-2012-0437
- Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional halfspace problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39(23), 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
- Dhaliwal, R. and Sherief, H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828
- El-Karamany, A.S. and Ezzat, M.A. (2004), "Thermal shock problem in generalized thermo-viscoelasticity under four theories", Int. J. Eng. Sci., 42(7), 649-671. https://doi.org/10.1016/j.ijengsci.2003.07.009
- Ezzat, M.A., El-Karamany, A.S., El-Bary A.A. and Fayik M.A. (2013), "Fractional calculus in one-dimensional isotropic thermo-viscoelasticity", Comp. Rend. Mec., 341(7), 553-566. https://doi.org/10.1016/j.crme.2013.04.001
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermo-mechanics", Proc. Royal Soc. London A., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transforms", J. Comp. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Huilgol, R. and Phan-Thien, N. (1997), Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam.
- Ilioushin, A.A. and Pobedria, B.E. (1970), Fundamentals of the Mathematical Theories of Thermal Viscoelasticity, Nauka, Moscow.
- Kaliski, S. and Nowacki, W. (1962), "Combined elastic and electromagnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Bull. L'acade. Polon. Sci., 10, 213-223.
- Kumar, R. and Partap, G. (2011), "Vibration analysis of wave motion in micropolar thermoviscoelastic plate", Struct. Eng. Mech., 39(6), 861-875. https://doi.org/10.12989/sem.2011.39.6.861
- Kumar, R., Sharma, N. and Lata P. (2016), "Effects of Hall current in a transversely isotropic magneto-thermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
- Lord, H. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Magin, R.L. and Royston, T.J. (2010) "Fractional order elastic model of cartilage: A multi-scale approach", Comm. Non. Sci. Num. Sim., 15(3), 657-664. https://doi.org/10.1016/j.cnsns.2009.05.008
- Meral, F.C., Royston, T.J. and Magin R. (2010), "Fractional calculus in viscoelasticity: An experimental study", Comm. Non. Sci. Num. Sim., 15(4), 939-945. https://doi.org/10.1016/j.cnsns.2009.05.004
- Miller, K.S. and Ross, B. (1993), An Introduction to Fractional Calculus and Fractional Differential Equation, Wiley, New York.
- Nayfeh, A.H. and Nemat-Nasser, S. (1972), "Electro-magnetothermoelastic plane waves in solids with thermal relaxation", J. Appl. Mech., 39(1), 108-113. https://doi.org/10.1115/1.3422596
- Othman, M.I.A. and Song Y. (2006) "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech., 184(1), 189-204. https://doi.org/10.1007/s00707-006-0337-4
- Othman, M.I.A. and Ahmed E.A.A. (2015), "The effect of rotation on piezo-thermoelastic medium using different theories", Struct. Eng. Mech., 56(4), 649-665. https://doi.org/10.12989/sem.2015.56.4.649
- Paria, G. (1962), "On magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 58, 527-531. https://doi.org/10.1017/S030500410003680X
- Rakshit, M. and Mukhopadhyay, B. (2007), "A two dimensional thermoviscoelastic problem due to instantaneous point heat source", Math. Comp. Model., 46(11), 1388-1397. https://doi.org/10.1016/j.mcm.2006.11.036
- Ross, B. (1977), "The development of fractional calculus 1695-1900", His. Math., 4(1), 75-89. https://doi.org/10.1016/0315-0860(77)90039-8
- Sharma, N., Kumar R. and Ram P. (2008), "Dynamical behaviour of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.019
- Tanner, R.I. (1988), Engineering Rheology, Oxford University Press Inc., New York.
- Vernotte, P. (1958), "Les panadoxes de la theorie continue de l‟equatioin de la chaleur", C.R. Acad. Sci., 246, 3154-3155.
- Willson, A.J. (1963), "The propagation of magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 59(2), 483-488. https://doi.org/10.1017/S0305004100037087
- Youssef, H.M. (2006), "Generalized magneto-thermoelasticity in a conducting medium with variable material properties", Appl. Math. Comp., 173(2), 822-833. https://doi.org/10.1016/j.amc.2005.04.017
- Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Cont., 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837