DOI QR코드

DOI QR Code

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita (Department of Mathematics, Guru Jambheshwar University of Science & Technology) ;
  • Kalkal, Kapil Kumar (Department of Mathematics, Guru Jambheshwar University of Science & Technology) ;
  • Sheoran, Sandeep Singh (Department of Mathematics, Guru Jambheshwar University of Science & Technology)
  • 투고 : 2016.07.10
  • 심사 : 2017.02.10
  • 발행 : 2017.07.10

초록

In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

키워드

참고문헌

  1. Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional viscoelastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29(6), 673-687. https://doi.org/10.12989/sem.2008.29.6.673
  2. Caputo, M. and Mainardi, F. (1971) "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(1), 134-147. https://doi.org/10.1007/BF00879562
  3. Caputo, M. (1974), "Vibrations of an infinite viscoelastic layer with a dissipative memory", J. Acous. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
  4. Cattaneo, C. (1958), "Sur une forme de l‟equation de la chaleur elinant le paradoxes d‟une propagation instantance", C.R. Acad. Sci., 247, 431-432.
  5. Chandrasekharaiah, D.S. (1986), "Thermoelasticty with second sound: A review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705
  6. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
  7. Das, P. and Kanoria, M. (2012), "Magneto-thermoelastic response in a perfectly conducting medium with three-phase-lag effect", Acta Mech., 223(4), 811-828. https://doi.org/10.1007/s00707-011-0591-y
  8. Deswal, S. and Kalkal, K. (2011), "A two-dimensional generalized electro-magneto-thermo-viscoelastic problem for a half-space with diffusion", Int. J. Therm. Sci., 50(5), 749-759. https://doi.org/10.1016/j.ijthermalsci.2010.11.016
  9. Deswal, S., Sheoran, S.S. and Kalkal K.K. (2013), "A twodimensional problem in magneto-thermoelasticity with laser pulse under different boundary conditions", J. Mech. Mater. Struct., 8(8), 441-459. https://doi.org/10.2140/jomms.2013.8.441
  10. Deswal, S. and Yadav, R. (2014), "Thermodynamic behaviour of microstretch viscoelastic solids with internal heat source", Can. J. Phys., 92(5), 425-434. https://doi.org/10.1139/cjp-2012-0437
  11. Deswal, S. and Kalkal, K.K. (2015), "Three-dimensional halfspace problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects", Appl. Math. Model., 39(23), 7093-7112. https://doi.org/10.1016/j.apm.2015.02.045
  12. Dhaliwal, R. and Sherief, H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828
  13. El-Karamany, A.S. and Ezzat, M.A. (2004), "Thermal shock problem in generalized thermo-viscoelasticity under four theories", Int. J. Eng. Sci., 42(7), 649-671. https://doi.org/10.1016/j.ijengsci.2003.07.009
  14. Ezzat, M.A., El-Karamany, A.S., El-Bary A.A. and Fayik M.A. (2013), "Fractional calculus in one-dimensional isotropic thermo-viscoelasticity", Comp. Rend. Mec., 341(7), 553-566. https://doi.org/10.1016/j.crme.2013.04.001
  15. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
  16. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermo-mechanics", Proc. Royal Soc. London A., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
  17. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
  18. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
  19. Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
  20. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transforms", J. Comp. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  21. Huilgol, R. and Phan-Thien, N. (1997), Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam.
  22. Ilioushin, A.A. and Pobedria, B.E. (1970), Fundamentals of the Mathematical Theories of Thermal Viscoelasticity, Nauka, Moscow.
  23. Kaliski, S. and Nowacki, W. (1962), "Combined elastic and electromagnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Bull. L'acade. Polon. Sci., 10, 213-223.
  24. Kumar, R. and Partap, G. (2011), "Vibration analysis of wave motion in micropolar thermoviscoelastic plate", Struct. Eng. Mech., 39(6), 861-875. https://doi.org/10.12989/sem.2011.39.6.861
  25. Kumar, R., Sharma, N. and Lata P. (2016), "Effects of Hall current in a transversely isotropic magneto-thermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091
  26. Lord, H. and Shulman, Y.A. (1967), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  27. Magin, R.L. and Royston, T.J. (2010) "Fractional order elastic model of cartilage: A multi-scale approach", Comm. Non. Sci. Num. Sim., 15(3), 657-664. https://doi.org/10.1016/j.cnsns.2009.05.008
  28. Meral, F.C., Royston, T.J. and Magin R. (2010), "Fractional calculus in viscoelasticity: An experimental study", Comm. Non. Sci. Num. Sim., 15(4), 939-945. https://doi.org/10.1016/j.cnsns.2009.05.004
  29. Miller, K.S. and Ross, B. (1993), An Introduction to Fractional Calculus and Fractional Differential Equation, Wiley, New York.
  30. Nayfeh, A.H. and Nemat-Nasser, S. (1972), "Electro-magnetothermoelastic plane waves in solids with thermal relaxation", J. Appl. Mech., 39(1), 108-113. https://doi.org/10.1115/1.3422596
  31. Othman, M.I.A. and Song Y. (2006) "The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation", Acta Mech., 184(1), 189-204. https://doi.org/10.1007/s00707-006-0337-4
  32. Othman, M.I.A. and Ahmed E.A.A. (2015), "The effect of rotation on piezo-thermoelastic medium using different theories", Struct. Eng. Mech., 56(4), 649-665. https://doi.org/10.12989/sem.2015.56.4.649
  33. Paria, G. (1962), "On magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 58, 527-531. https://doi.org/10.1017/S030500410003680X
  34. Rakshit, M. and Mukhopadhyay, B. (2007), "A two dimensional thermoviscoelastic problem due to instantaneous point heat source", Math. Comp. Model., 46(11), 1388-1397. https://doi.org/10.1016/j.mcm.2006.11.036
  35. Ross, B. (1977), "The development of fractional calculus 1695-1900", His. Math., 4(1), 75-89. https://doi.org/10.1016/0315-0860(77)90039-8
  36. Sharma, N., Kumar R. and Ram P. (2008), "Dynamical behaviour of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.019
  37. Tanner, R.I. (1988), Engineering Rheology, Oxford University Press Inc., New York.
  38. Vernotte, P. (1958), "Les panadoxes de la theorie continue de l‟equatioin de la chaleur", C.R. Acad. Sci., 246, 3154-3155.
  39. Willson, A.J. (1963), "The propagation of magneto-thermoelastic plane waves", Math. Proc. Cam. Phil. Soc., 59(2), 483-488. https://doi.org/10.1017/S0305004100037087
  40. Youssef, H.M. (2006), "Generalized magneto-thermoelasticity in a conducting medium with variable material properties", Appl. Math. Comp., 173(2), 822-833. https://doi.org/10.1016/j.amc.2005.04.017
  41. Youssef, H.M. (2016), "Theory of generalized thermoelasticity with fractional order strain", J. Vib. Cont., 22(18), 3840-3857. https://doi.org/10.1177/1077546314566837