DOI QR코드

DOI QR Code

Effects of Streptozotocin, Bisphenol A and Diethylstilbestrol on Production of Reactive Oxygen Species and Lipid Peroxidation in the Boar Sperm

  • Lee, A-Sung (College of Animal Life Sciences, Kangwon National University) ;
  • Lee, Sang-Hee (Institute of Animal Resources, Kangwon National University) ;
  • Lee, Seunghyung (College of Animal Life Sciences, Kangwon National University) ;
  • Yang, Boo-Keun (College of Animal Life Sciences, Kangwon National University)
  • Received : 2017.04.25
  • Accepted : 2017.06.29
  • Published : 2017.06.30

Abstract

Streptozotocin (STZ), bisphenol A (BPA), and diethylstilbestrol (DES) are known as endocrine disruptors, occurs oxidative stress in animal cells. Generally, oxidative stress induces reactive oxygen species (ROS) and lipid peroxidation of sperm and lead to decreased viability and fertility in pigs. Therefore, we investigated the influence of STZ, BPA and DES on ROS production and lipid peroxidation on boar sperm. Collected sperm were incubated with semen extender containing $10{\mu}M\;STZ$, $10{\mu}M\;BPA$ and $20{\mu}M\;DES$ for 3, 6 and 9 hours. Intracellular ROS and lipid peroxidation of sperm were analyzed by 2', 7'-dichlorofluorescein diacetate and malondialdehyde methods. The results show that, intracellular ROS was not significantly different among the all treatments, but lipid peroxidation was significantly increased in STZ group at 3 hour after incubation with boar sperm (P<0.05). These results suggest that STZ stimulates lipid peroxidation more than ROS production and may exert a negative effect on sperm fertility.

Keywords

References

  1. Catala A. The ability of melatonin to counteract lipid peroxidation in biological membranes. Current Molecular Medicine. 2007. 7: 638-649. https://doi.org/10.2174/156652407782564444
  2. Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN. Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes. 2001. 50: 2040-2046. https://doi.org/10.2337/diabetes.50.9.2040
  3. Fraczek M, Szumala-Kakol A, Jedrzejczak P, Kamieniczna M, Kurpisz M. Bacteria trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen inflammation. Fertility and Sterility. 2007. 88: 1076-1085. https://doi.org/10.1016/j.fertnstert.2006.12.025
  4. Frye CA, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F, Fernandez M, Fusani L, Kah O, Kajta M, Le Page Y, Patisaul HB, Venerosi A, Wojtowicz AK, Panzica GC. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. Journal of Neuroendocrinology. 2012. 24: 144-159. https://doi.org/10.1111/j.1365-2826.2011.02229.x
  5. Guthrie HD, Welch GR. Effects of reactive oxygen species on sperm function. Theriogenology. 2012. 78: 1700-1708. https://doi.org/10.1016/j.theriogenology.2012.05.002
  6. Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy. 2017. 86: 605-611. https://doi.org/10.1016/j.biopha.2016.12.059
  7. Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010. 59: 850-860. https://doi.org/10.2337/db09-1342
  8. Khaki A, Fathiazad F, Nouri M, Khaki A, Maleki NA, Khamnei HJ, Ahmadi P. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytotherapy Research. 2010. 24: 1285-1291. https://doi.org/10.1002/ptr.3100
  9. Kim Y-J, Lee S-H, Yang J-W, Lee Y-J, Choi S-B, Lee K-J, S Lee, C-K Park. Effect of nicotinic acid on frozen-thawed sperm characteristics in bulls. Annals of Animal Resource Sciences. 2015. 26: 75-84. https://doi.org/10.12718/AARS.2015.26.2.75
  10. King AJ. The use of animal models in diabetes research. British Journal of Pharmacology. 2012. 166: 877-894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
  11. Kumaresan A, Kadirvel G, Bujarbaruah KM, Bardoloi RK, Das A, Kumar S, Naskar S. Preservation of boar semen at 18 degrees C induces lipid peroxidation and apoptosis like changes in spermatozoa. Animal Reproduction Science. 2009. 110: 162-171. https://doi.org/10.1016/j.anireprosci.2008.01.006
  12. Minamiyama Y, Ichikawa H, Takemura S, Kusunoki H, Naito Y, Yoshikawa T. Generation of reactive oxygen species in sperms of rats as an earlier marker for evaluating the toxicity of endocrine-disrupting chemicals. Free Radical Research. 2010. 44: 1398-1406. https://doi.org/10.3109/10715762.2010.510523
  13. Oda T, Kaneko M. Formation of active oxygen species from diethylstilbestrol, a synthetic estrogen, and its metabolite in the presence of RAW 264.7 cells. Biological & Pharmaceutical Bulletin. 2002. 25: 1311-1314. https://doi.org/10.1248/bpb.25.1311
  14. Oliveira PF, Tomas GD, Dias TR, Martins AD, Rato L, Alves MG, Silva BM. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reproductive Biomedicine Online. 2015. 31: 544-556. https://doi.org/10.1016/j.rbmo.2015.06.021
  15. Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomedicine & Pharmacotherapy. 2017. 86: 570-582. https://doi.org/10.1016/j.biopha.2016.12.044
  16. Sapanidou V, Taitzoglou I, Tsakmakidis I, Kourtzelis I, Fletouris D, Theodoridis A, Zervos I, Tsantarliotou M. Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization. Theriogenology. 2015. 84: 1273-1282. https://doi.org/10.1016/j.theriogenology.2015.07.005
  17. Singh R, Parihar P, Singh S, Mishra RK, Singh VP, Prasad SM. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology. 2016. 11: 213-218.
  18. Song MS, Han KS, Hwang HS, Kim JT, Park CK, Kim CI, Cheong HT, Jang HY, Lee HK, Yang BK. Effect of taurine on sperm characteristics in fresh boar semen during in vitro storage. Annals of Animal Resource Sciences. 2003. 14: 10-19.
  19. Squier TC. Oxidative stress and protein aggregation during biological aging. Experimental Gerontology. 2001. 36: 1539-1550. https://doi.org/10.1016/S0531-5565(01)00139-5
  20. Srivastava S, Gupta P, Chandolia A, Alam I. Bisphenol A: a threat to human health? Journal of Environmental Health. 2015. 77: 20-26.
  21. Sung HJ, Jeong YJ, Kim J, Jung E, Jun JH. Soybean peptides induce apoptosis in HeLa cells by increasing oxidative stress. Biomedical Science Letters. 2016. 21: 77-83.
  22. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. 2012. 50: 537-546.
  23. Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanage G. Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutation Research. 2012. 743: 83-90. https://doi.org/10.1016/j.mrgentox.2011.12.023
  24. Tvrda E, Kovacik A, Tusimova E, Massanyi P, Lukac N. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. 2015. 50: 1440-1451. https://doi.org/10.1080/10934529.2015.1071153
  25. Wang Y, Sharma RK, Agarwal A. Effect of cryopreservation and sperm concentration on lipid peroxidation in human semen. Urology. 1997. 50: 409-413. https://doi.org/10.1016/S0090-4295(97)00219-7
  26. Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction. 2007. 77: 190-201.
  27. Zheng S, Zhao M, Ren Y, Wu Y, Yang J. Sesamin suppresses STZ induced INS-1 cell apoptosis through inhibition of $NF-{\kappa}B$ activation and regulation of Bcl-2 family protein expression. European Journal of Pharmacology. 2015. 750: 52-58. https://doi.org/10.1016/j.ejphar.2015.01.031