DOI QR코드

DOI QR Code

Plant regeneration via callus culture of sea-milkwort (Glaux maritima L.)

갯봄맞이(Glaux maritima L.)의 캘루스 배양을 통한 식물체 재분화

  • Han, Jeung-Sul (Department of Horticultural Science, College of Agriculture & Life Science, Kyungpook National University)
  • 한증술 (경북대학교 농업생명과학대학 원예과학과)
  • Received : 2017.06.18
  • Accepted : 2017.06.24
  • Published : 2017.06.30

Abstract

A callus-mediated regeneration protocol for sea-milkwort, an endangered coastal plant species in South Korea, is reported here. The explants of in vitro-plantlets generated from a node culture revealed distinguishable responses in callus induction depending on genotype, explant source, light condition, and 2,4-D concentration. Especially, continuous darkness exclusively facilitated callus induction from explants prior to other treatments. The calli initiated on the media with 2,4-D ranging from 0.1 mg/L to 3.0 mg/L in the dark vigorously proliferated when subcultured on the same media in continuous darkness. Given 1.0 mg/L zeatin in addition to darkness to the calli of the 'Pistachio' genotype, normal adventitious shoots were only regenerated from nodular structures that formed earlier from the calli at the frequency of 24.4 percent. Regenerated shoots easily grew into plantlets with roots and green color on a phytohormone-free MS medium under lighted condition, that were used for node culture as plant materials. Node culture effectively multiplied plantlets in accordance with protocol by Bae et al. (2016). Acclimatized plantlet clusters developed mature plant clusters under inland environment, followed by flowering the following April. Results were merged with node culture protocol suggested by Bae et al. (2016), which, as an in vitro propagation system for sea-milkwort, may contribute to natural habitat restoration.

우리나라에서 멸종위기 해안식물로 지정된 갯봄맞이의 캘루스배양을 통한 재분화 프로토콜을 보고한다. 마디배양을 통해 육성한 기내 유식물체의 절편은 유전자형, 절편의 종류, 광조건 및 2,4-D 첨가농도에 따라 캘루스 형성에 상이한 반응을 보였다. 특히, 다른 처리와는 무관하게 연속 암배양이 절편으로부터 캘루스 유도에 결정적인 영향을 미쳤다. 2,4-D 0.1-3.0mg/L 농도 범위의 배지에서 유도된 캘루스를 동일한 조성의 배지로 이식하여 암배양했을 때왕성하게 캘루스가 증식하였다. 연속 암조건에서 zeatin 1.0mg/L 첨가배지에 'Pistachio' 유전자형의 캘루스를 배양했을 때만 유일하게 정상적인 신초가 재분화 되었고, 이 때 신초는 캘루스로부터 형성된 마디구조에서 발달하였으며 신초의 재분화율은 24.4%였다. 재분화 신초를 식물호르몬 무첨가 배지로 이식하여 명배양 했을 때 지상부 녹화와 더불어 뿌리가 발생하여 유식물체로 발달하였다. 기내 유식물체를 기 보고된 마디배양 프로토콜(Bae et al. 2016)에 따라 배양했을 때 효과적으로 유식물체를 증식시킬 수 있었다. 기외 순화시킨 유식물체는 내륙 자연 환경하에서 성숙식물체로 생육하였으며 이듬 해 4월에 개화하였다. 본 연구의 결과는 Bae et al. (2016)이 제안한 마디배양 프로토콜과 통합하여 운용될 수 있고, 통합된 프로토콜은 갯봄맞이의 기내 번식 시스템으로서 갯봄맞이 자생지 복원에 기여할 수 있을 것이다.

Keywords

References

  1. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105-121 https://doi.org/10.1111/j.1095-8339.2009.00996.x
  2. Bae SJ, Kang BC, Jeon MH, Kim SC, Kim CK, Han JS (2016) In vitro multiplication through single-node culture of sea-milkwort (Glaux maritima L.) Korean J Hortic Sci Technol 34:461-471
  3. Bunn E, Turner SR, Dixon KW (2011) Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cell Dev Biol-Plant 47:188-200
  4. Compton ME (1999) Dark pretreatment improves adventitious shoot organogenesis from cotyledons of diploid watermelon. Plant Tissue Organ Cult 58:185-188 https://doi.org/10.1023/A:1006364013126
  5. Curuk S, Ananthakrishnan G, Singer S, Xia X, Elman C, Nestel D, Cetiner S, Gaba V (2003) Regeneration in vitro from the hypocotyls of Cucumis species produces almost exclusively diploid shoots, and does not require light. HortScience 38:105-109
  6. De Souza TV, Thiesen JF, Lando AP, Guerra MP, Santos M (2017) Morpho-histodifferentiation of Billbergia nodular cultures. Protoplasma 254:435-443 https://doi.org/10.1007/s00709-016-0962-2
  7. Farhadi N, Panahandeh J, Azar AM, Salte SA (2017) Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Sci Hort 218:80-86 https://doi.org/10.1016/j.scienta.2016.11.056
  8. Han JS, Oh DG, Mok IG, Park HG, Kim CK (2004) Efficient plant regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep 23:291-296 https://doi.org/10.1007/s00299-004-0846-3
  9. Ikeuch M, Sugimoto K, Iwase A (2013) Plant callus: Mechanisms of induction and Repression. Plant Cell 25:3159-3173 https://doi.org/10.1105/tpc.113.116053
  10. IUCN (2015) Threatened species in past and present IUCN Red Lists: 2015, The IUCN Red List of Threatened Species TM 2-2015: Summary statistics. Available via http://www.iucnredlist.org/about/summary-statistics#Tables_1_2 Accessed 9 September 2015
  11. Jerling L (1988a) Clone dynamics, population dynamics and vegetation pattern of Glaux maritima on a Baltic sea shore meadow. Vegetatio 74:171-185 https://doi.org/10.1007/BF00044742
  12. Jerling L (1988b) Population dynamics of Glaux maritima L. along a distributional cline. Vegetatio 74:161-170 https://doi.org/10.1007/BF00044741
  13. Leshem B, Ronen R, Soudry E, Lurie S, Gepstein S (1995) Cytokinin and white light coact to enhance polypeptide metabolism and shoot regeneration in cultured melon cotyledons. J Plant Physiol 145:291-295 https://doi.org/10.1016/S0176-1617(11)81892-4
  14. Murashige T, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472-497
  15. NIBR (National Institute of Biological Resources) (2012) Korean Red List of Threatened Species-Vascular plants. Nature and Ecology, Incheon, Republic of Korea
  16. Pence VC (2011) Evaluation costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol-Plant 47:176-187 https://doi.org/10.1007/s11627-010-9323-6
  17. Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Miss Bot Gard 99:214-220 https://doi.org/10.3417/2011112
  18. Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. American J Bot 91:1743-1756 https://doi.org/10.3732/ajb.91.11.1743
  19. Sahai A, Shahzad A, Sharma S (2010) Histology of organogenesis and somatic embryogenesis in excised root cultures of an endangered species Tylophora indica (Asclepiadaceae). Austrian J Bot 58:198-205 https://doi.org/10.1071/BT09220
  20. Scalzo J, Donno D, Miller S, Ghezzi M, Mellano MG, Cerutti AK, Beccaro GL (2016) Effect of genotype, medium and light on in vitro plant proliferation of Vaccinium spp. New Zealand J Crop Hortic Sci 44:231-246 https://doi.org/10.1080/01140671.2016.1206946
  21. Son SW, Lee BC, Yang HH, Seol YJ (2011) Distribution of five rare plants in Korea. Korean J Pl Taxon 41:280-286 https://doi.org/10.11110/kjpt.2011.41.3.280
  22. Tomes DT, Smith OS (1985) The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor Appl Gen 70:505-509 https://doi.org/10.1007/BF00305983
  23. Yokoyama T, Moriyasu Y, Sugawara Y (2011) Adventitious bud formation through nodule induction by thidiazuron in cultured leaf segments of the Japanese persimmon (Diospyros kaki Thunb.). Plant Biotech 28:339-344 https://doi.org/10.5511/plantbiotechnology.11.0131a