References
- Agarwal, C. and Goswami, A. (2016), "Nernst planck approach based on non-steady state flux for transport in a donnan dialysis process", J. Membr. Sci., 507, 119-125. https://doi.org/10.1016/j.memsci.2016.02.021
- Bartels, C., Franks, R., Rybar, S., Schierach, M. and Wilf, M. (2005), "The effect of feed ionic strength on salt passage through reverse osmosis membranes", Desalinat., 184(1), 185-195. https://doi.org/10.1016/j.desal.2005.04.032
- Damak, K., Ayadi, A., Zeghmati, B. and Schmitz, P. (2005), "Concentration polarisation in tubular membranes-a numerical approach", Desalinat., 171(2), 139-153. https://doi.org/10.1016/j.desal.2004.05.002
- Efligenir, A., Deon, S., Fievet, P., Druart, C., Morin-Crini, N. and Crini, G. (2014), "Decontamination of polluted discharge waters from surface treatment industries by pressure-driven membranes: Removal performances and environmental impact", Chem. Eng. J., 258, 309-319. https://doi.org/10.1016/j.cej.2014.07.080
- Gherasim, C.V., Cuhorka, J. and Mikulasek, P. (2013), "Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental results and modelling", J. Membr. Sci., 436, 132-144. https://doi.org/10.1016/j.memsci.2013.02.033
- Gherasim, C.V., Hanckova, K., Palarcik, J. and Mikulasek, P. (2015), "Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane", J. Membr. Sci., 490, 46-56. https://doi.org/10.1016/j.memsci.2015.04.051
- Gherasim, C.V. and Mikulasek, P. (2014), "Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration", Desalinat., 343, 67-74. https://doi.org/10.1016/j.desal.2013.11.012
- He, Y., Li, G., Wang, H., Zhao, J., Su, H. and Huang, Q. (2008), "Effect of operating conditions on separation performance of reactive dye solution with membrane process", J. Membr. Sci., 321(2), 183-189. https://doi.org/10.1016/j.memsci.2008.04.056
- Hoek, E.M.V. and Elimelech, M. (2003), "Cake-enhanced concentration polarization: A new fouling mechanism for salt-rejecting membranes", Environ. Sci. Technol., 37(24), 5581-5588. https://doi.org/10.1021/es0262636
- Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H. and Wu, Z. (2013), "Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions", Chem. Eng. J., 228, 392-397. https://doi.org/10.1016/j.cej.2013.04.116
- Huang, J., Liu, L., Zeng, G., Li, X., Peng, L., Li, F., Jiang, Y., Zhao, Y. and Huang, X. (2014), "Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration", Desalinat., 335(1), 1-8. https://doi.org/10.1016/j.desal.2013.11.038
- Ji, P., Motin, A., Shan, W., Benard, A., Bruening, M.L. and Tarabara, V.V. (2015), "Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles", Chem. Eng. Res. Des., 106, 101-114.
- Ji, P., Motin, A., Shan, W., Benard, A., Bruening, M.L. and Tarabara, V.V. (2016), "Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles", Chem. Eng. Res. Des., 106, 101-114. https://doi.org/10.1016/j.cherd.2015.11.007
- Jie, G. (2014), Nanofiltration Membranes for Lead Removal.
- Koyuncu, I. and Topacik, D. (2004), "Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: Model application", J. Environ. Sci. Health, Part A, 39(4), 1055-1068. https://doi.org/10.1081/ESE-120028413
- Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013), "A review on membrane fabrication: Structure, properties and performance relationship", Desalinat., 326, 77-95. https://doi.org/10.1016/j.desal.2013.06.016
- Lastra, A., Gomez, D., Romero, J., Francisco, J.L., Luque, S. and Alvarez, J.R. (2004), "Removal of metal complexes by nanofiltration in a TCF pulp mill: Technical and economic feasibility", J. Membr. Sci., 242(1), 97-105. https://doi.org/10.1016/j.memsci.2004.05.012
- Li, N.N., Fane, A.G., Ho, W.W. and Matsuura, T. (2011), Advanced Membrane Technology and Applications, John Wiley & Sons.
- Liu, Y., Su, Y., Zhao, X., Li, Y., Zhang, R. and Jiang, Z. (2015), "Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments", J. Membr. Sci., 486, 195-206. https://doi.org/10.1016/j.memsci.2015.03.045
- Luo, J. and Wan, Y. (2013), "Effects of pH and salt on nanofiltration-a critical review", J. Membr. Sci., 438, 18-28. https://doi.org/10.1016/j.memsci.2013.03.029
- Mancinelli, D. and Halle, C. (2015), "Nano-filtration and ultra-filtration ceramic membranes for food processing: A mini review", J. Membr. Sci. Technol., 5(140), 2.
- Mehdipour, S., Vatanpour, V. and Kariminia, H.R. (2015), "Influence of ion interaction on lead removal by a polyamide nanofiltration membrane", Desalinat., 362, 84-92. https://doi.org/10.1016/j.desal.2015.01.030
- Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L. and Hilal, N. (2015), "Nanofiltration membranes review: Recent advances and future prospects", Desalinat., 356, 226-254. https://doi.org/10.1016/j.desal.2014.10.043
- Montalvillo, M., Silva, V., Palacio, L., Calvo, J.I., Carmona, F.J., Hernandez, A. and Pradanos, P. (2014), "Charge and dielectric characterization of nanofiltration membranes by impedance spectroscopy", J. Membr. Sci., 454, 163-173. https://doi.org/10.1016/j.memsci.2013.12.017
- Motin, A., Tarabara, V.V. and Benard, A. (2015), "Numerical investigation of the performance and hydrodynamics of a rotating tubular membrane used for liquid-liquid separation", J. Membr. Sci., 473, 245-255. https://doi.org/10.1016/j.memsci.2014.09.025
- Padaki, M., Emadzadeh, D., Masturra, T. and Ismail, A.F. (2015), "Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing", Desalinat., 362, 141-150. https://doi.org/10.1016/j.desal.2015.01.012
- Peeters, J.M.M., Boom, J.P., Mulder, M.H.V. and Strathmann, H. (1998), "Retention measurements of nanofiltration membranes with electrolyte solutions", J. Membr. Sci., 145(2), 199-209. https://doi.org/10.1016/S0376-7388(98)00079-9
- Ray, J.R., Tadepalli, S., Nergiz, S.Z., Liu, K.K., You, L., Tang, Y., Singamaneni, S. and Jun, Y.S. (2015), "Hydrophilic, bactericidal anoheater-enabled reverse osmosis membranes to improve fouling resistance", ACS Appl. Mater. Interf., 7(21), 11117-11126. https://doi.org/10.1021/am509174j
- Sablani, S.S., Goosen, M.F.A., Al-Belushi, R. and Wilf, M. (2001), "Concentration polarization in ultrafiltration and reverse osmosis: A critical review", Desalinat., 141(3), 269-289. https://doi.org/10.1016/S0011-9164(01)85005-0
- Shamsuddin, N., Das, D.B. and Starov, V.M. (2015), "Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow", Chem. Eng. J., 276, 331-339. https://doi.org/10.1016/j.cej.2015.04.075
- Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W. and Leysen, R. (2003), "A review of pressure-driven membrane processes in wastewater treatment and drinking water production", Environ. Progr., 22(1), 46-56. https://doi.org/10.1002/ep.670220116
- Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Freger, V., Verliefde, A.R.D. and Hoek, E.M.V. (2014), "A critical review of transport through osmotic membranes", J. Membr. Sci., 454, 516-537. https://doi.org/10.1016/j.memsci.2013.12.034
- Warczok, J., Ferrando, M., Lopez, F. and Guell, C. (2004), "Concentration of apple and pear juices by nanofiltration at low pressures", J. Food Eng., 63(1), 63-70. https://doi.org/10.1016/S0260-8774(03)00283-8
- Zahrim, A., Hilal, N. and Tizaoui, C. (2013), "Tubular nanofiltration of highly concentrated CI acid black 210 dye", Water Sci. Technol., 67(4), 901-906. https://doi.org/10.2166/wst.2012.638
Cited by
- Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model vol.12, pp.2, 2017, https://doi.org/10.12989/mwt.2021.12.2.059