DOI QR코드

DOI QR Code

Retention of sulfate and chloride ions in commercially available tubular membranes

  • Qadir, Danial (Department of Chemical Engineering, University Teknologi PETRONAS) ;
  • Mukhtar, Hilmi (Department of Chemical Engineering, University Teknologi PETRONAS) ;
  • Keong, Lau Kok (Department of Chemical Engineering, University Teknologi PETRONAS)
  • Received : 2016.06.24
  • Accepted : 2017.02.24
  • Published : 2017.07.25

Abstract

Performance evaluation of four commercially available tubular membranes (AFC 80, AFC 30, PU 608, ES 404) was accomplished in self-assembled membrane testing unit. Effects of varying transmembrane pressure, feed concentration and anion type were investigated. Aqueous solutions of salts such as calcium chloride, calcium sulfate, tin chloride and tin sulfate were prepared for this study. It was noted that the investigated parameters e.g., pressure and concentration had significant effects on membrane's performance. Nevertheless, anion type effectively played its role in the rejection of salts since salt having SO4-2 anions had a better rejection than the salts containing Cl-1. It is observed that rejection was dominated by Donnon exclusion for strongly charged nanofiltration membranes whereas for weakly charged ultrafiltration membranes, size exclusion was the key mechanism to reject the ions.

Keywords

References

  1. Agarwal, C. and Goswami, A. (2016), "Nernst planck approach based on non-steady state flux for transport in a donnan dialysis process", J. Membr. Sci., 507, 119-125. https://doi.org/10.1016/j.memsci.2016.02.021
  2. Bartels, C., Franks, R., Rybar, S., Schierach, M. and Wilf, M. (2005), "The effect of feed ionic strength on salt passage through reverse osmosis membranes", Desalinat., 184(1), 185-195. https://doi.org/10.1016/j.desal.2005.04.032
  3. Damak, K., Ayadi, A., Zeghmati, B. and Schmitz, P. (2005), "Concentration polarisation in tubular membranes-a numerical approach", Desalinat., 171(2), 139-153. https://doi.org/10.1016/j.desal.2004.05.002
  4. Efligenir, A., Deon, S., Fievet, P., Druart, C., Morin-Crini, N. and Crini, G. (2014), "Decontamination of polluted discharge waters from surface treatment industries by pressure-driven membranes: Removal performances and environmental impact", Chem. Eng. J., 258, 309-319. https://doi.org/10.1016/j.cej.2014.07.080
  5. Gherasim, C.V., Cuhorka, J. and Mikulasek, P. (2013), "Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental results and modelling", J. Membr. Sci., 436, 132-144. https://doi.org/10.1016/j.memsci.2013.02.033
  6. Gherasim, C.V., Hanckova, K., Palarcik, J. and Mikulasek, P. (2015), "Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane", J. Membr. Sci., 490, 46-56. https://doi.org/10.1016/j.memsci.2015.04.051
  7. Gherasim, C.V. and Mikulasek, P. (2014), "Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration", Desalinat., 343, 67-74. https://doi.org/10.1016/j.desal.2013.11.012
  8. He, Y., Li, G., Wang, H., Zhao, J., Su, H. and Huang, Q. (2008), "Effect of operating conditions on separation performance of reactive dye solution with membrane process", J. Membr. Sci., 321(2), 183-189. https://doi.org/10.1016/j.memsci.2008.04.056
  9. Hoek, E.M.V. and Elimelech, M. (2003), "Cake-enhanced concentration polarization: A new fouling mechanism for salt-rejecting membranes", Environ. Sci. Technol., 37(24), 5581-5588. https://doi.org/10.1021/es0262636
  10. Hu, Y., Guo, T., Ye, X., Li, Q., Guo, M., Liu, H. and Wu, Z. (2013), "Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions", Chem. Eng. J., 228, 392-397. https://doi.org/10.1016/j.cej.2013.04.116
  11. Huang, J., Liu, L., Zeng, G., Li, X., Peng, L., Li, F., Jiang, Y., Zhao, Y. and Huang, X. (2014), "Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration", Desalinat., 335(1), 1-8. https://doi.org/10.1016/j.desal.2013.11.038
  12. Ji, P., Motin, A., Shan, W., Benard, A., Bruening, M.L. and Tarabara, V.V. (2015), "Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles", Chem. Eng. Res. Des., 106, 101-114.
  13. Ji, P., Motin, A., Shan, W., Benard, A., Bruening, M.L. and Tarabara, V.V. (2016), "Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles", Chem. Eng. Res. Des., 106, 101-114. https://doi.org/10.1016/j.cherd.2015.11.007
  14. Jie, G. (2014), Nanofiltration Membranes for Lead Removal.
  15. Koyuncu, I. and Topacik, D. (2004), "Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: Model application", J. Environ. Sci. Health, Part A, 39(4), 1055-1068. https://doi.org/10.1081/ESE-120028413
  16. Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013), "A review on membrane fabrication: Structure, properties and performance relationship", Desalinat., 326, 77-95. https://doi.org/10.1016/j.desal.2013.06.016
  17. Lastra, A., Gomez, D., Romero, J., Francisco, J.L., Luque, S. and Alvarez, J.R. (2004), "Removal of metal complexes by nanofiltration in a TCF pulp mill: Technical and economic feasibility", J. Membr. Sci., 242(1), 97-105. https://doi.org/10.1016/j.memsci.2004.05.012
  18. Li, N.N., Fane, A.G., Ho, W.W. and Matsuura, T. (2011), Advanced Membrane Technology and Applications, John Wiley & Sons.
  19. Liu, Y., Su, Y., Zhao, X., Li, Y., Zhang, R. and Jiang, Z. (2015), "Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments", J. Membr. Sci., 486, 195-206. https://doi.org/10.1016/j.memsci.2015.03.045
  20. Luo, J. and Wan, Y. (2013), "Effects of pH and salt on nanofiltration-a critical review", J. Membr. Sci., 438, 18-28. https://doi.org/10.1016/j.memsci.2013.03.029
  21. Mancinelli, D. and Halle, C. (2015), "Nano-filtration and ultra-filtration ceramic membranes for food processing: A mini review", J. Membr. Sci. Technol., 5(140), 2.
  22. Mehdipour, S., Vatanpour, V. and Kariminia, H.R. (2015), "Influence of ion interaction on lead removal by a polyamide nanofiltration membrane", Desalinat., 362, 84-92. https://doi.org/10.1016/j.desal.2015.01.030
  23. Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L. and Hilal, N. (2015), "Nanofiltration membranes review: Recent advances and future prospects", Desalinat., 356, 226-254. https://doi.org/10.1016/j.desal.2014.10.043
  24. Montalvillo, M., Silva, V., Palacio, L., Calvo, J.I., Carmona, F.J., Hernandez, A. and Pradanos, P. (2014), "Charge and dielectric characterization of nanofiltration membranes by impedance spectroscopy", J. Membr. Sci., 454, 163-173. https://doi.org/10.1016/j.memsci.2013.12.017
  25. Motin, A., Tarabara, V.V. and Benard, A. (2015), "Numerical investigation of the performance and hydrodynamics of a rotating tubular membrane used for liquid-liquid separation", J. Membr. Sci., 473, 245-255. https://doi.org/10.1016/j.memsci.2014.09.025
  26. Padaki, M., Emadzadeh, D., Masturra, T. and Ismail, A.F. (2015), "Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing", Desalinat., 362, 141-150. https://doi.org/10.1016/j.desal.2015.01.012
  27. Peeters, J.M.M., Boom, J.P., Mulder, M.H.V. and Strathmann, H. (1998), "Retention measurements of nanofiltration membranes with electrolyte solutions", J. Membr. Sci., 145(2), 199-209. https://doi.org/10.1016/S0376-7388(98)00079-9
  28. Ray, J.R., Tadepalli, S., Nergiz, S.Z., Liu, K.K., You, L., Tang, Y., Singamaneni, S. and Jun, Y.S. (2015), "Hydrophilic, bactericidal anoheater-enabled reverse osmosis membranes to improve fouling resistance", ACS Appl. Mater. Interf., 7(21), 11117-11126. https://doi.org/10.1021/am509174j
  29. Sablani, S.S., Goosen, M.F.A., Al-Belushi, R. and Wilf, M. (2001), "Concentration polarization in ultrafiltration and reverse osmosis: A critical review", Desalinat., 141(3), 269-289. https://doi.org/10.1016/S0011-9164(01)85005-0
  30. Shamsuddin, N., Das, D.B. and Starov, V.M. (2015), "Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow", Chem. Eng. J., 276, 331-339. https://doi.org/10.1016/j.cej.2015.04.075
  31. Van Der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W. and Leysen, R. (2003), "A review of pressure-driven membrane processes in wastewater treatment and drinking water production", Environ. Progr., 22(1), 46-56. https://doi.org/10.1002/ep.670220116
  32. Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Freger, V., Verliefde, A.R.D. and Hoek, E.M.V. (2014), "A critical review of transport through osmotic membranes", J. Membr. Sci., 454, 516-537. https://doi.org/10.1016/j.memsci.2013.12.034
  33. Warczok, J., Ferrando, M., Lopez, F. and Guell, C. (2004), "Concentration of apple and pear juices by nanofiltration at low pressures", J. Food Eng., 63(1), 63-70. https://doi.org/10.1016/S0260-8774(03)00283-8
  34. Zahrim, A., Hilal, N. and Tizaoui, C. (2013), "Tubular nanofiltration of highly concentrated CI acid black 210 dye", Water Sci. Technol., 67(4), 901-906. https://doi.org/10.2166/wst.2012.638

Cited by

  1. Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model vol.12, pp.2, 2017, https://doi.org/10.12989/mwt.2021.12.2.059