DOI QR코드

DOI QR Code

Genome size of 15 Lamiaceae taxa in Korea

한국산 꿀풀과 15 분류군에 대한 유전체양 조사

  • Lee, Yoonkyung (Department of Biology, Sungshin Women's University) ;
  • Kim, Sangtae (Department of Biology, Sungshin Women's University)
  • 이윤경 (성신여자대학교 생물학과) ;
  • 김상태 (성신여자대학교 생물학과)
  • Received : 2017.05.22
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

The genome size is one of the basic characters of an organism, and it is widely applied in various fields of biology, such as systematics, breeding biology, population biology, and evolutionary biology. This factor was recently highlighted in genome studies because choosing a representative of a plant group having the smallest genome size is important for the efficiency of a genome project. For the estimation of the genome size, flow cytometry has recently been highlighted because it is a convenient, fast, and reliable method. In this study, we report the genome sizes of 15 taxa of Lamiaceae from nine genera distributed in Korea using flow cytometry. Data pertaining to the genome size for all of our species have not been reported thus far, and the data from Agastache, Clinopodium, Elsholtzia, and Isodon are the first reported for each genus. The genome sizes of 15 genera and 39 species were reported to the Plant DNA C-values Database (http://data.kew.org/cvalues/). Scutellaria indica L. has a genome size of 0.37 pg (1C). This is the fourth smallest value among the 98 Lamiaceae taxa in the Angiosperm DNA C-value Database, indicating that this taxon can be used as a reference species in the genome studies in Lamiaceae as a native Korean species. The largest genome size observed in this study is in Phlomis umbrosa Turcz. (1C=2.60 pg), representing the possible polyploidy origin of this species in the family.

한 생물체의 전체 유전체 크기는 계통학, 육종학, 집단유전학, 진화학과 같은 많은 분야에 활용될 수 있는 기본적인 정보이다. 최근에는 전체 유전체 결정 연구에서 특히 강조되고 있는데, 이는 최소 유전체 크기를 갖는 분류군의 선택은 유전체 결정사업의 효율성과 직접적으로 연관되어 있기 때문이다. 그러므로 유전체 연구의 선행 단계로서 연구 대상 종 및 연관된 분류군들의 유전체 양의 파악은 필수적이다. 본 연구에서는 쉽고 빠르면서도 신뢰성 있는 방법으로 알려져 있는 flow cytometry를 이용하여 한반도에 자생하는 꿀풀과의 9속 15 분류군에 대한 유전체 크기를 측정하였다. 본 연구에서 유전체 양이 측정된 15 분류군들은 모두 최초로 그 유전체 양이 조사된 분류군들로서 Plant DNA C-value Database (http://data.kew.org/cvalues/)에 수록된 바 없는데, 특히 Agastache, Clinopodium, Elsholtzia, Isodon에 속하는 분류군들은 속 수준에서의 최초의 보고이다. 골무꽃(Scutellaria indica L.)은 0.37 pg (1C)의 유전체 크기를 갖는 것으로 측정되었는데, 이는 현재까지 보고된 꿀풀과 98 분류군의 유전체 양들 중 네 번째로 유전체의 크기가 작은 분류군이다. 이에 골무꽃은 향후 유전체 연구를 위해 꿀풀과를 대표할 한국 자생종으로서 우선적으로 선택하여 분석할 수 있는 종일 것이다. 조사된 분류군들 중 가장 유전체 크기가 큰 분류군은 속단(Phlomis umbrosa Turcz.; 1C=2.6 pg)으로서 이는 다배체 형성에 의한 본 종의 기원 가능성을 제시하고 있다.

Keywords

References

  1. Amborella Genome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342: 1241089. https://doi.org/10.1126/science.1241089
  2. Angiosperm Phylogeny Group. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20. https://doi.org/10.1111/boj.12385
  3. Bai, C., W. S. Alverson, A. Follansbee and D. M. Waller. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of botany 110: 1623-1629. https://doi.org/10.1093/aob/mcs222
  4. Bainard, J. D., B. C. Husband, S. J. Baldwin, A. J. Fazekas, T. R. Gregory, S. G. Newmaster and P. Kron. 2011. The effects of rapid desiccation on estimates of plant genome size. Chromosome Research 19: 825-842. https://doi.org/10.1007/s10577-011-9232-5
  5. Barow, M. and A. Meister. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell and Environment 26: 571-584. https://doi.org/10.1046/j.1365-3040.2003.00988.x
  6. Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B Biological Sciences 181: 109-135. https://doi.org/10.1098/rspb.1972.0042
  7. Bennett, M. D., P. Bhandol and I. J. Leitch. 2000. Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Annals of Botany 86: 859-909. https://doi.org/10.1006/anbo.2000.1253
  8. Bennett, M. D. and I. J. Leitch. 2005. Plant DNA C-values Database (Release 4.0). Royal Botanic Gardens, Kew.
  9. Bennett, M. D. and I. J. Leitch. 2010. Plant DNA C-values Database (Release 5.0). Royal Botanic Gardens, Kew.
  10. Bennett, M. D. and I. J. Leitch. 2012. Angiosperm DNA C-values Database (Release 8.0). Royal Botanic Gardens, Kew.
  11. Ceccarelli, M., L. Morosi and P. G. Cionini. 1998. Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41: 96-103. https://doi.org/10.1139/g97-104
  12. Dolezel, J., J. Bartos, H. Voglmayr and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127-128.
  13. Dolezel, J., J. Greilhuber and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244. https://doi.org/10.1038/nprot.2007.310
  14. Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. https://doi.org/10.1126/science.220.4601.1049
  15. Greilhuber, J., T. Borsch, K. Muller, A. Worberg, S. Porembski and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777. https://doi.org/10.1055/s-2006-924101
  16. Hanson, L., I. J. Leitch and M. D. Bennett. 2002. Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew.
  17. Kim, S., M. Park, S.,-I., Yeom, Y.-M. Kim, J. M. Lee, H.-A. Lee, E. Seo, J. Choi, K. Cheong, K.-T. Kim, K. Jung, G.-W. Lee, S.-K. Oh, C. Bae, S.-B. Kim, H.-Y. Lee, S.-Y. Kim, M.-S. Kim, B.-C. Kang, Y. D. Jo, H.-B. Yang, H.-J. Jeong, W.-H. Kang, J.-K. Kwon, C. Shin, J. Y. Lim, J. H. Park, J. H. Huh, J.-S. Kim, B.-D. Kim, O. Cohen, I. Paran, M. C. Suh, S. B. Lee, Y.-K. Kim, Y. Shin, S.-J. Noh, J. Park, Y. S. Seo, S.-Y. Kwon, H. A Kim, J. M. Park, H.-J. Kim, S.-B. Choi, P. W. Bosland, G. Reeves, S.-H. Jo, B.-W. Lee, H.-T. Cho, H.-S. Choi, M.-S. Lee, Y. Yu, Y. D. Choi, B.-S. Park, A. van Deynze, H. Ashrafi, T. Hill, W. T. Kim, H.-S. Pai, H. K. Ahn, I. Yeam, J. J. Giovannoni, J. K. C. Rose, I. Sorensen, S.-J. Lee, R. W. Kim, I.-Y. Choi, B.-S. Choi, J.-S. Lim, Y.-H. Lee and D. Cho. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46: 270-278. https://doi.org/10.1038/ng.2877
  18. Kubesova, M., L. Moravcova, J. Suda, V. Jarosik and P. Pysek. 2010. Naturalized plants have smaller genomes than their noninvading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.
  19. Leitch, I. J. and M. D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosones, and Genomes. Dolezel, J., J. Greilhuber and J. Suda (eds.), Wiley-VCH, Weinheim. Pp. 153-176.
  20. Mahdavi, S. and G. Karimzadeh. 2010. Karyological and nuclear DNA content variation in some Iranian endemic Thymus species (Lamiaceae). Journal of Agricultural Science and Technology 12: 447-458.
  21. Maksimovic, M., D. Vidic, M. Milos, M. E. Solic, S. Abadzic and S. Siljak-Yakovlev. 2007. Effect of the environmental conditions on essential oil profile in two Dinaric Salvia species: S. brachyodon Vandas and S. officinalis L. Biochemical Systematics and Ecology 35: 473-478. https://doi.org/10.1016/j.bse.2007.02.005
  22. Marie D. and S. C. Brown. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41-51. https://doi.org/10.1016/0248-4900(93)90113-S
  23. Mirsky, A. E. and H. Ris. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. The Journal of General Physiology 34: 451-462. https://doi.org/10.1085/jgp.34.4.451
  24. Mowforth, M. A. 1985. Variation in nuclear DNA amounts in flowering plants: An ecological anlaysis (Doctoral dissertation). University of Sheffield, Sheffield.
  25. Ohri, D. and A. Kumar. 1986. Nuclear DNA amounts in some tropical hardwoods. Caryologia 39: 303-307. https://doi.org/10.1080/00087114.1986.10797792
  26. Ohri, D., A. Bhargava and A. Chatterjee. 2004. Nuclear DNA amounts in 112 species of tropical hardwoods: New estimates. Plant Biology 6: 555-561. https://doi.org/10.1055/s-2004-821235
  27. Olszewska, M. J. and R. Osiecka. 1983. The relationship between 2 C DNA content, life cycle type, systematic position and the dynamics of DNA endoreplication in parenchyma nuclei during growth and differentiation of roots in some dicotyledonous herbaceous species. Biochemie und Physiologie der Pflanzen 178: 581-599. https://doi.org/10.1016/S0015-3796(83)80073-0
  28. Pellicer, J., M. F. Fay and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10-15. https://doi.org/10.1111/j.1095-8339.2010.01072.x
  29. Rosenbaumova, R., I. Plackova and J. Suda. 2004. Variation in Lamium subg. Galeobdolon (Lamiaceae): Insights from ploidy levels, morphology and isozymes. Plant Systematics and Evolution 244: 219-244. https://doi.org/10.1007/s00606-003-0071-5
  30. Schmidt-Lebuhn, A. N., J. Fuchs and M. Kessler. 2008. Flow cytometric measurements do not reveal different ploidy levels in Minthostachys (Lamiaceae). Plant Systematics and Evolution 271: 123-128. https://doi.org/10.1007/s00606-007-0613-3
  31. Siljak-Yakovlev, S., F. Pustahija, E. M. Solic, F. Bogunic, E. Muratovic, N. Basic, O. Catrice and S. C. Brown. 2010. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters 3: 190-213. https://doi.org/10.1166/asl.2010.1115
  32. Stevens, P. F. 2001. Angiosperm Phylogeny Website (version 12). Retrieved Jul. 2012, available from http://www.mobot.org/MOBOT/research/APweb/.
  33. Suda, J., T. Kyncl and R. Freiova. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany 92: 153-164. https://doi.org/10.1093/aob/mcg104
  34. Suda, J., T. Kyncl and V. Jarolimova. 2005. Genome size variation in Macaronesian angiosperms: Forty percent of the Canarian endemic flora completed. Plant Systematics and Evolution 252: 215-238. https://doi.org/10.1007/s00606-004-0280-6
  35. Suh, Y., S. Hong and S. Park. 2007. Lamiaceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.). Academy Publ. Co., Seoul. Pp. 815-841. (in Korean)
  36. Temsch, E. M., W. Temsch, L. Ehrendorfer-Schratt and J. Greilhuber. 2010. Heavy metal pollution, selection, and genome size: The species of the Zerjav study revisited with flow cytometry. Journal of Botany 2010: 596542.
  37. Thomas C. A. Jr. 1971. The genetic organization of chromosomes. Annual Review of Genetics 5: 237-256. https://doi.org/10.1146/annurev.ge.05.120171.001321
  38. Vesely, P., P. Bures, P. Smarda and T. Pavlicek. 2012. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Annals of Botany 109: 65-75. https://doi.org/10.1093/aob/mcr267
  39. Zonneveld, B. J. M., I. J. Leitch and M. D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229-244. https://doi.org/10.1093/aob/mci170