DOI QR코드

DOI QR Code

The Effect of Wall Thickness of ZnO Nanotubes on the Ethanol Gas Sensing Performance

산화아연 나노튜브의 벽 두께에 따른 에탄올 가스 검출특성

  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 강우승 (인하공업전문대학 금속재료과)
  • Received : 2017.06.16
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

ZnO nanotubes were synthesized to investigate the effect of wall thickness on the ethanol gas sensing performance. The wall thickness of the nanotubes was varied from approximately 20 to 60 nm. Transmission electron microscopy, X-ray diffraction and SAED (Selected Area Electron Beam Diffraction) analyses showed that the synthesized nanotubes were polycrystalline structured ZnO with the diameter of approximately 200-300nm. The ZnO nanotubes sensor with an optimum wall thickness of 51.8nm showed approximately 8 times higher response, compared to that with 21.14nm wall thick nanotubes, to the ethanol concentration of 500 ppm at the temperature of $300^{\circ}C$. The wall thickness of 51.8nm was found to be a little larger than 46nm, which was theoretically derived Debye length. Along with the study of the wall thickness effect on the performance of the sensors, the mechanisms of gas sensing of the polycrystalline ZnO nanotubes are also discussed.

Keywords

References

  1. A. Menzel, K. Subannajui, F. Guder, D. Moser, O. Paul, M. Zacharias, Multifunctional ZnO-nanowire-based Sensor, Adv. Func. Mater. 21 (2011) 4342-4348. https://doi.org/10.1002/adfm.201101549
  2. C.J. Chu, C.S. Yeh, C.K. Liao, L.C. Tsai, C.M. Huang, H.Y. Lin, J.J. Shyue, Y.T. Chen, C.D. Chen, Improving nanowire sensing capability by electrical field alignment of surface probing molecules, Nano Lett. 13 (2013) 2564-2569. https://doi.org/10.1021/nl400645j
  3. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photonics 7 (2013) 752-758. https://doi.org/10.1038/nphoton.2013.191
  4. L. Hu, J. Yan, M. Liao, L. Wu, X. Fang, Ultrahigh external quantum efficiency from thin $SnO_2$ nanowire ultraviolet photodetector, Small 7 (2011) 1012-1017. https://doi.org/10.1002/smll.201002379
  5. M. Tonezzer, N.V. Hieu, Size-dependent response of single-nanowire gas sensors, Sens. Actuators B: Chem. 163 (2012) 146-152. https://doi.org/10.1016/j.snb.2012.01.022
  6. D. Chen, J. Xu, Z. Xie, G. Shen, Nanowires assembled $SnO_2$ nanopolyhedrons with enhanced gas sensing properties, ACS Appl. Mater. Interfaces, 3 (2011) 2112-2117. https://doi.org/10.1021/am2003312
  7. M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors, J. Phys. Chem. C 117 (2013) 17850-17858. https://doi.org/10.1021/jp4061895
  8. X. Zou, J. Wang, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J.C. Ho, J. Li, C. Jiang, Y. Fang, W. Liu, L. Liao, Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors, Nano Lett. 13 (2013) 3287-3292. https://doi.org/10.1021/nl401498t
  9. S. Park, H. Ko, S. Kim. C. Lee, Role of the interfaces in multiple networked one-dimensional core-shell nanostructured gas sensors, ACS Appl. Mater. Interfaces 6 (2014) 9595-9600. https://doi.org/10.1021/am501975v
  10. N.V. Hieu, H.V. Vuong, N.V. Duy, N.D. Hoa, A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm $NO_2$ gas sensor application, Sens. Actuators B: Chem. 171 (2012) 760-768.
  11. R. Lu, W. Zhou, K. Shi, Y. Yang, L. Wang, K. Pan, C. Tian, Z. Ren, H. Fu, Alumina decorated $TiO_2$ nanotubes with ordered mesoporous walls as high sensitivity $NO_x$ gas sensors at room temperature, Nanoscale, 5 (2013) 8569-8576. https://doi.org/10.1039/c3nr01903a
  12. A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature 494 (2013) 455-458. https://doi.org/10.1038/nature11876
  13. O. Lupan, T. Pauporte, B. Viana, Low-voltage UV-electoluminescence from ZnO-nanowire array/p-GaN light-emitting diodes, Adv. Mater. 22 (2010) 3298-3302. https://doi.org/10.1002/adma.201000611
  14. A. A. Chaaya, M. Bechelany, S. Balme, P. Miele, ZnO 1D nanostructures designed by combining atomic layer deposition and electospinning for UV sensor applications, J. Mater. Chem. A 2 (2014) 20650-20658. https://doi.org/10.1039/C4TA05239K
  15. F. Schuster, B. Laumer, R.R. Zamani, C. Magen, J.R. Morante, J. Arbiol, M. Stutzmann, p-GaN/n-ZnO heterojunction nanowires: Optoelectonic properties and role of interface polarity, ACS Nano 8 (2014) 4376-4384. https://doi.org/10.1021/nn406134e
  16. E. Satheeshkumar, J. Yang, Preparation and characterization of silver film coated ZnO nanowire gas sensors based on the infrared surface enhancement effect for detection of VOCs, RSC Adv. 4 (2014) 19331-19337. https://doi.org/10.1039/c3ra40494c
  17. C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of ${\alpha}-Fe_2O_3/ZnO$ heteronanostructures, Sens. Actuators B: Chem.140 (2009) 185-189. https://doi.org/10.1016/j.snb.2009.04.011