DOI QR코드

DOI QR Code

Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition

외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류

  • Received : 2017.05.25
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

The exoskeleton robot is a technology developed to be used in various fields such as military, industry and medical treatment. The exoskeleton robot works by sensing the movement of the wearer. By recognizing the wearer's daily activities, the exoskeleton robot can assist the wearer quickly and efficiently utilize the system. In this study, LDA, QDA, and kNN are used to classify gait types through kinetic data obtained from subjects. Walking was selected from general walking and stair walking which are mainly performed in daily life. Seven IMUs sensors were attached to the subject at the predetermined positions to measure kinematic factors. As a result, LDA was classified as 78.42%, QDA as 86.16%, and kNN as 87.10% ~ 94.49% according to the value of k.

외골격 로봇은 군사, 산업 및 의료와 같은 다양한 분야에서 사용되도록 개발된 기술이다. 외골격 로봇은 착용자의 움직임을 감지하여 작동한다. 외골격 로봇이 착용자의 일상적인 행동을 인지함으로써 착용자를 신속하게 보조하고 시스템을 효율적으로 활용할 수 있다. 본 연구에서는 피실험자로부터 얻은 운동학적 데이터를 통해 LDA, QDA, kNN을 활용하여 보행유형을 분류한다. 보행은 주로 일상생활에서 수행되는 일반보행과 계단보행을 선정하였다. 피실험자에게 7개의 IMUs 센서를 정해진 위치에 부착하여 운동학적 요소를 측정 하였다. 결과적으로, LDA는 78.42%, QDA는 86.16%, kNN는 k값에 따라 87.10% ~ 94.49%의 정확도로 분류하였다.

Keywords

References

  1. Zoss, Adam B., Hami Kazerooni, and Andrew Chu, "Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)", IEEE/ASME Transactions On Mechatronics., vol. 11, no. 2, pp. 128-138, 2006. https://doi.org/10.1109/TMECH.2006.871087
  2. Bogue, Robert, "Exoskeletons and robotic prosthetics: a review of recent developments", Industrial Robot: An International Journal., vol. 36, no. 5, pp. 421-427, 2009. https://doi.org/10.1108/01439910910980141
  3. Mohammed, Samer, Yacine Amirat, and Hala Rifai, "Lowerlimb movement assistance through wearable robots: State of the art and challenges", Advanced Robotics., vol. 26, no. 1-2, pp. 1-22, 2012. https://doi.org/10.1163/016918611X607356
  4. Yu, S. N., Lee, H. D., Lee, S. H., Kim, W. S., Han, J. S., & Han, C. S, "Design of an under-actuated exoskeleton system for walking assist while load carrying", Advanced Robotics., vol. 26, no. 5-6, pp. 561-580, 2012. https://doi.org/10.1163/156855311X617506
  5. HYUNDAI, https://www.slashgear.com/hyundai-unveils-robotexoskeleton-that-makes-operators-very-strong-13439955/.
  6. Adams, J. A., "Critical considerations for human-robot interface development", In Proceedings of 2002 AAAI Fall Symposium, Nov. 2002, pp. 1-8.
  7. Bueno, L., Brunetti, F., Frizera, A., & Pons, J. L., "Humanrobot cognitive interaction." Wearable Robots: Biomechatronic Exoskeletons., vol. 1, pp. 87-126, 2008.
  8. Lee, H., Yu, S., Lee, S., Han, J., & Han, C., "Development of human-robot interfacing method for assistive wearable robot of the human upper extremities", In SICE Annual Conference, Aug. 2008, pp. 1755-1760.
  9. Tao, W., Liu, T., Zheng, R., & Feng, H., "Gait analysis using wearable sensors", Sensors, vol. 12, no. 2, pp. 2255-2283, 2012. https://doi.org/10.3390/s120202255
  10. Taborri, J., Palermo, E., Rossi, S., & Cappa, P., "Gait partitioning methods: a systematic review", Sensors, vol. 16, no. 1, pp. 66, 2016. https://doi.org/10.3390/s16010066
  11. Liu, Tao, Yoshio Inoue, and Kyoko Shibata., "Development of a wearable sensor system for quantitative gait analysis", Measurement, vol. 42, no. 7, pp. 978-988, 2009. https://doi.org/10.1016/j.measurement.2009.02.002
  12. Zhang, Zhiqiang, Zhipei Huang, and Jiankang Wu., "Ambulatory hip angle estimation using Gaussian particle filter", Journal of Signal Processing Systems., vol. 58, no. 3, pp. 341-357, 2010. https://doi.org/10.1007/s11265-009-0373-0
  13. Peng, Z., Cao, C., Liu, Q., & Pan, W., "Human walking pattern recognition based on KPCA and SVM with ground reflex pressure signal", Mathematical Problems in Engineering, 2013.
  14. Nordin, Margareta, and Victor Hirsch Frankel, eds., Basic biomechanics of the musculoskeletal system, Lippincott Williams & Wilkins, 2001.
  15. Izenman, Alan Julian. "Modern multivariate statistical techniques. Regression, classification and manifold learning", Springer, 2008.
  16. Sanchez-Lacuesta, J., J. Prat, J. V. Hoyos, E. Viosca, C. Soler-Garca, M. Comin, R. Lafuente, A. Cortes, and P. Vera, "Biomecanica de la marcha humana normal", Valencia: Generalitat Valenciana, pp. 19-112, 1993.