DOI QR코드

DOI QR Code

Isolation, Root Colonization and Evaluation of Some Plant Growth-promoting Rhizobacteria in Paddy Rice

  • Kang, Ui-Gum (National Institute of Crop Science, RDA) ;
  • Park, Hyang-Mi (National Institute of Crop Science, RDA) ;
  • Ko, Jee-Yeon (National Institute of Crop Science, RDA) ;
  • Lee, Jae-Saeng (National Institute of Crop Science, RDA) ;
  • Jeon, Weon-Tai (National Institute of Crop Science, RDA) ;
  • Park, Chang-Young (National Institute of Crop Science, RDA) ;
  • Park, Ki-Do (National Institute of Crop Science, RDA) ;
  • Chebotar, Vladimir K. (All-Russia Research Institute for Agricultural Microbiology)
  • Received : 2016.12.05
  • Accepted : 2017.05.02
  • Published : 2017.06.30

Abstract

In order to obtain promising rice growth-promoting microbial strains that can be used as substitutes for chemical fertilizers, 172 bacterial strains were isolated from rice roots grown in Korean and Russian soils. Out of them, the strains KR076, KR083, KR181 and RRj228 showed plant growth-promoting activities on maize seedlings. Bacillus megaterium KR076 and Bacillus sp. KR083 showed both nitrogen-fixing and plant growth-promoting activities, while Rhizobium sp. KR181 and Pseudomonas sp. RRj228 appeared to support only plant growth-promotion, but not $N_2$ fixation. Especially, RRj228 showed high growth promoting activity at low concentrations. Inoculation studies with KR083 and RRj228 revealed a high affinity to the Japonica rice variety such as Junambyeo than the Korean Tongil type variety such as Arumbyeo. Both KR083 and RRj228 strains showed rhizoplane and/or endophytic colonization in Japonica and Tongil types rice when soaked with the bacterial suspension of $1.1{\times}10^5cfu\;ml^{-1}$ for six and twelve hours. However, the total bacterial cell numbers were higher in the roots of Japonica variety than in the Tongil type. In inoculation trials with Daesanbyeo rice variety, the seedlings inoculated with KR181 and RRj228 at the rate of $2.0{\times}10^6cfu\;ml^{-1}$ showed yield increment of 35% and 33% (p < 0.01), respectively, so that they contributed to the replacement of chemical fertilizer at half doses of N, $P_2O_5$, and $K_2O$ in pots. In Junambyeo rice seedlings, the strain RRj228, when inoculated with a cell suspension of $1.8{\times}10^6cfu\;ml^{-1}$, promoted 3.4% higher yield at 70% dose than at a full dose level of N $110kg\;ha^{-1}$ in field. These results suggest that the rhizobacteria KR181 and RRj228 are prospective strains for enhancing rice performance.

Keywords

References

  1. Backman, P.A., P.M. Brannen, and W.F. Mahaffee. 1994. Plant responses and discase control following seed inoculation with Bacillus subtilis. p. 3-9. In M. Ryder. P.M. Stephens and C.D. Bowen (ed.) Improving plant productivity with rhizosphere bacteria. CSIRO Division of Soil, Adelaide, Australia.
  2. Baldani, J.I., B. Pot, G. Kirchhof, E. Falsen, V.L.D. Baldani, F.L. Olivares, B. Hoste, K. Kersters, A. Hartmann, M. Gillis, and J. Dobereiner. 1996. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int. J. Syst. Bacteriol. 46:802-810. https://doi.org/10.1099/00207713-46-3-802
  3. Baldani, V.L.D., J.I. Baldani, and J. Dobereiner. 2001. Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol. Fertil. Soils 30:485-491.
  4. Barazani, O. and J. Friedman. 1999. Is IAA the major root growth factor secreted form plant-growth-mediating bacteria? J. Chem. Ecol. 25:2397-2406. https://doi.org/10.1023/A:1020890311499
  5. Barber, S.A. and M. Silverbush. 1984. Plant root morphology and nutrient uptake. p. 65-88. In S.A. Barber, D.R. Bouldin, D.M. Kral, and S.L. Hawkins (ed.) Roots, Nutrient and Water Influx, and Plant Growth. ASA Special Publication Number 49. Am. Soc. Agro. Madison, WI.
  6. Bashan, Y. 1999. Interactions of Azospirillum spp. in soils: a review. Biol. Fertil. Soils 29:246-256. https://doi.org/10.1007/s003740050549
  7. Bashan, Y., L.E. de-Bashan, S.R. Prabhu, and J.P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1993-2013). Plant Soil 378:1-33. https://doi.org/10.1007/s11104-013-1956-x
  8. Bertrand, H., C. Plassard, X. Pinochet, B. Touraine, P. Normand, and J.C. Cleyet-Marel. 2000. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46:229-236. https://doi.org/10.1139/w99-137
  9. Caballero-Mellado, J., L.E. Fuentes-Ramirez, V.M. Reis, and E. Martinez-Romero. 1995. Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl. Environ. Microbiol. 61:3008-3013.
  10. Coenye, T., M. Falsen, B. Vancanneyt, J.R.W. Hoste, K.K Govan, and P. Vandamme. 1999. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J. Syst. Bacteriol. 49:405-413. https://doi.org/10.1099/00207713-49-2-405
  11. Dashti, N., F. Zhang, R. Hynes, and D.L. Smith. 1998. plant growth-promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short-season conditions. Plant Soil 200:205-213. https://doi.org/10.1023/A:1004358100856
  12. de Freitas and J.J, Germida. 1990. Plant growth promoting rhizobacteria for winter wheat. Can. J. Microbiol. 36:265-272. https://doi.org/10.1139/m90-046
  13. Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek, Y. Okon, and J. Vanderleyden. 2002. Effect of inoculation with wild type Azospirillum brasilense and A. Irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol. Fertil. Soils 36:284-297. https://doi.org/10.1007/s00374-002-0534-9
  14. Egener, T., T. Hurek, and B. Reinhold-Hurek. 1999. Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol. Plant Microbe Interact. 12:813-819. https://doi.org/10.1094/MPMI.1999.12.9.813
  15. Handelsman, J. and E.V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869.\ https://doi.org/10.1105/tpc.8.10.1855
  16. Hiltner, L. 1904. Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbackteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten Deutscher Landwirtschafts Gesellschaft. 98:59-78.
  17. James, E.K., P. Gyaneshwar, N. Mathan, Q.L. Barraquio, P.M. Reddy, P.P.M. Iannetta, F.L. Olivares, and J.K. Landha. 2002. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant Microbe. Interact. 15:894-906. https://doi.org/10.1094/MPMI.2002.15.9.894
  18. Kang, U.G., P. Somasegaran, H. Hoben, and B.B. Bohlool. 1991. Symbiotic potential, competitiveness, and selological properties of Bradyrhizobium japonicum indigenous to Korean soils. Appl. Environ. Microbiol. 57:1038-1045.
  19. Kang, U.G., V.K. Tchebotar, C.A. Asis Jr., H.S. Ha, and S. Akao. 1997. Nodulation competitiveness and nitrogenase activity of gusA-marked Rhizobium meliloti in alfalfa. Soil Microorganisms 50:45-49.
  20. Kloepper, J.W. and C.J. Beauchamp. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Micrbiol. 38:1219-1232. https://doi.org/10.1139/m92-202
  21. Kloepper, J.W. and M.N. Schroth. 1978. Plant growth-promothing rhizobacteria on radishes. In Proc. of the 4th Int. Conf. Plant Pathol. Bacteria, Angers Vol. 2, p. 879-882.
  22. Klopper, J.W. and M.N. Schroth. 1981. Plant growth-promothing rhizobacteria and plant growth under gnotobiotic conditions. Phytophathology 71: 642-644. https://doi.org/10.1094/Phyto-71-642
  23. Klopper, J.W., M.N. Schroth, and T.D. Miller. 1980. Effects of rhizosphere colonization by plant growth-promotion rhizobacteria on potato plant development and yield. Phytophathology 70:1078-1082. https://doi.org/10.1094/Phyto-70-1078
  24. Kovtunovych, G., O. Lar, S. Kamalova, V. Kordyum, D. Kleiner, and N. Kozyrovska. 1999. Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1-6.
  25. Kozhevin, P.A. and S.S. Korchmaru. 1995. On theoretical substantiation of the use of microbial fertilizers. Soil Biol. 50:45-52.
  26. Ladha, J.K., A.T. Padre, G.C. Punzalan, I. Watanabe, and S.K. de Data. 1988. Ability of wetland rice to stimulate biological nitrogen fixation and utilize soil nitrogen. p. 747-752. In H. Bothe, F.J. de Bruijn, and W.E. Newton (ed.) Nitrogen Fixation. Hundred Years After. Fischer, Stuttgart.
  27. Lavakush, J., Yadav, J.P. Verma, D.K. Jaiswal, and A. Kumar. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol. Eng. 62:123-128. https://doi.org/10.1016/j.ecoleng.2013.10.013
  28. Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  29. Lugtenberg, B., L. Dekkers, and G.V. Bilemberg. 2001. Molecular determinants of rhizosphere colonization by pseudomonas. Annu. Rev. Phytophathol. 39:461-490. https://doi.org/10.1146/annurev.phyto.39.1.461
  30. Mahaffee, W.F. 1991. Effects of edaphic factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. In Cotton root colonization by plant growth-promoting rhizobacteria: determination of effecting factors and development of a luciferase marker. MS thesis, Auburn University, Auburn, Ala.
  31. Malik, K.A., R. Bilal, S. Mehnaz, G. Rasul, M.S. Mirza, and S. Ali. 1997. Association of nitrogen-fixing, plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37-44. https://doi.org/10.1023/A:1004295714181
  32. Mayak, S., T. Tirosh, and B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166:525-530. https://doi.org/10.1016/j.plantsci.2003.10.025
  33. McCully, M.E. 2001. Niches for bacterial endophytes in crop plants: a plant biologist's view. Aust. J. Plant Physiol. 28:983-990.
  34. Muthukumarasamy, R., D.C. Lee, S.C. Kim, and U.G. Kang. 2003. Utilization of endophytic nitrogen fixers in agriculture. p 166-179. In Proc. of the 2003 Conf. J Korean Soc. Appl. Biol. Chem..
  35. Muthukumarasamy, R., G. Revathi, and C. Lakshminarasimhan. 1999. Diazotrophic associations in sugarcane cultivation in South India. Trop. Agri (Trinidad). 76:171-178.
  36. Muthukumarasamy, R., G. Revathi, and P. Loganathan. 2002. Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243:91-102. https://doi.org/10.1023/A:1019963928947
  37. Nadeem, S.M., M. Ahmad, Z.A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32:429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
  38. Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3:223-228. https://doi.org/10.1016/0167-7799(85)90012-5
  39. Okon, Y. and J. Vanderleyden. 1997. Root-associated Azospirillum species can stimulate plants. ASM News 63:366-370.
  40. Pacovsky, R.S. 1990. Development and growth effects in the Sorghum-Azospirillum association. J. Appl. Bacteriol. 68:555-563. https://doi.org/10.1111/j.1365-2672.1990.tb05220.x
  41. Park, Y.S., K. Park, J.W. Kloepper, and C.M. Ryu. 2015. Plant growth-promoting rhizobacteria stimulate vegetative growth and asexual reproduction of Kalanchoe daigremontiana. Plant Pathol. J. 31:310-315. https://doi.org/10.5423/PPJ.NT.01.2015.0006
  42. Perez-Montano, F., C. Alias-Villegas, R.A. Bellogin, P. del Cerro, M.R. Espuny, I. Jimenez-Guerrero, F.J. Lopez-Baena, F.J. Ollero, and T. Cubo. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 169:325-336. https://doi.org/10.1016/j.micres.2013.09.011
  43. Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobia interactions. Plant, Cell and Environment 26:189-199. https://doi.org/10.1046/j.1365-3040.2003.00956.x
  44. Phillips, D.A, C.M. Joseph, G.P. Yang, E. Martinez-Romero, J.R. Sanborn, and H. Volpin. 1999. Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci. USA 96:12275-12280. https://doi.org/10.1073/pnas.96.22.12275
  45. Pospiech, A. and B. Neumann. 1995. A versatile quick-preparation of genomic DNA from Gram-positive bacteria. Trends Genet. 11:217-218. https://doi.org/10.1016/S0168-9525(00)89052-6
  46. Sethunathan, N., V.R. Rao, T.K. Adhya, and K. Raghu. 1983. Microbiology of rice soils. CRC Crit Rev Microbiol. 10:125-172.
  47. Shen, D. 1997. Microbial diversity and application of microbial products for agricultural purposes in China. Agric. Ecosyst. Environ. 62:237-245. https://doi.org/10.1016/S0167-8809(96)01132-2
  48. Suslow, T.V. and M.N. Schroth. 1982. rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199-206. https://doi.org/10.1094/Phyto-72-199
  49. Timmusk, S. and G.H. Wagner. 1999. The plant-growth-prompting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12:951-959. https://doi.org/10.1094/MPMI.1999.12.11.951
  50. Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852. https://doi.org/10.1016/S0038-0717(99)00113-3
  51. van Dommelen, A., E. van Bastelaere, V. Keijers, and J. Vanderleyden. 1997. Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake and chemotaxis. Plant Soil 194:155-160. https://doi.org/10.1023/A:1004250305689
  52. van Nieuwenhove, C., L. van Holm, S.A. Kulasooriya, and K. Vlassak. 2000. Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biol. Fertil. Soils 31:143-149. https://doi.org/10.1007/s003740050637
  53. Vedder-Wdiss, D., E. Jurkevitch, S. Burdman, D. Weiss, and Y. Okon. 1999. Root growth, respiration and beta-glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense. Symbiosis 26:363-377.
  54. Verma, S.C., J.K. Ladha, and A.K. Tripathi. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91:127-141. https://doi.org/10.1016/S0168-1656(01)00333-9
  55. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586. https://doi.org/10.1023/A:1026037216893