DOI QR코드

DOI QR Code

Prevalence of Hymenolepis nana and H. diminuta from Brown Rats (Rattus norvegicus) in Heilongjiang Province, China

  • Yang, Di (Department of Parasitology, Harbin Medical University) ;
  • Zhao, Wei (Department of Parasitology, Harbin Medical University) ;
  • Zhang, Yichi (Department of Parasitology, Harbin Medical University) ;
  • Liu, Aiqin (Department of Parasitology, Harbin Medical University)
  • Received : 2016.11.21
  • Accepted : 2017.05.20
  • Published : 2017.06.30

Abstract

Hymenolepis nana and Hymenolepis diminuta are globally widespread zoonotic cestodes. Rodents are the main reservoir host of these cestodes. Brown rats (Rattus norvegicus) are the best known and most common rats, and usually live wherever humans live, especially in less than desirable hygiene conditions. Due to the little information of the 2 hymenolepidid species in brown rats in China, the aim of this study was to understand the prevalence and genetic characterization of H. nana and H. diminuta in brown rats in Heilongjiang Province, China. Total 114 fecal samples were collected from brown rats in Heilongjiang Province. All the samples were subjected to morphological examinations by microscopy and genetic analysis by PCR amplification of the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene and the internal transcribed spacer 2 (ITS2) region of the nuclear ribosomal RNA gene. In total, 6.1% (7/114) and 14.9% (17/114) of samples were positive for H. nana and H. diminuta, respectively. Among them, 7 and 3 H. nana isolates were successfully amplified and sequenced at the COX1 and ITS2 loci, respectively. No nucleotide variations were found among H. nana isolates at either of the 2 loci. Seventeen H. diminuta isolates produced 2 different COX1 sequences while 7 ITS2 sequences obtained were identical to each other. The present results of H. nana and H. diminuta infections in brown rats implied the risk of zoonotic transmission of hymenolepiasis in China. These molecular data will be helpful to deeply study intra-specific variations within Hymenolepis cestodes in the future.

Keywords

References

  1. Cheng T, Liu GH, Song HQ, Lin RQ, Zhu XQ. The complete mitochondrial genome of the dwarf tapeworm Hymenolepis nana-a neglected zoonotic helminth. Parasitol Res 2016; 115: 1253-1262. https://doi.org/10.1007/s00436-015-4862-8
  2. Thompson RC. Neglected zoonotic helminths: Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum. Clin Microbiol Infect 2015; 21: 426-432. https://doi.org/10.1016/j.cmi.2015.01.004
  3. Crompton DW. How much human helminthiasis is there in the world? J Parasitol 1999; 85: 397-403. https://doi.org/10.2307/3285768
  4. Tena D, Perez Simon M, Gimeno C, Perez Pomata MT, Illescas S, Amondarain I, Gonzalez A, Dominguez J, Bisquert J. Human infection with Hymenolepis diminuta: case report from Spain. J Clin Microbiol 1998; 36: 2375-2376.
  5. Karuna T, Khadanga S. A case of Hymenolepis diminuta in a young male from Odisha. Trop Parasitol 2013; 3: 145-147. https://doi.org/10.4103/2229-5070.122145
  6. Kim BJ, Song KS, Kong HH, Cha HJ, Ock M. Heavy Hymenolepis nana infection possibly through organic foods: report of a case. Korean J Parasitol 2014; 52: 85-87. https://doi.org/10.3347/kjp.2014.52.1.85
  7. Olson PD, Yoder K, Fajardo L-G LF, Marty AM, van de Pas S, Olivier C, Relman DA. Lethal invasive cestodiasis in immunosuppressed patients. J Infect Dis 2003; 187: 1962-1966. https://doi.org/10.1086/375357
  8. Muehlenbachs A, Bhatnagar J, Agudelo CA, Hidron A, Eberhard ML, Mathison BA, Frace MA, Ito A, Metcalfe MG, Rollin DC, Visvesvara GS, Pham CD, Jones TL, Greer PW, Velez Hoyos A, Olson PD, Diazgranados LR, Zaki SR. Malignant transformation of Hymenolepis nana in a human host. N Engl J Med 2015; 373: 1845-1852. https://doi.org/10.1056/NEJMoa1505892
  9. Franssen F, Swart A, van Knapen F, van der Giessen J. Helminth parasites in black rats (Rattus rattus) and brown rats (Rattus norvegicus) from different environments in the Netherlands. Infect Ecol Epidemiol 2016; 6: 31413. https://doi.org/10.3402/iee.v6.31413
  10. Simoes RO, Luque JL, Gentile R, Rosa MC, Costa-Neto S, Maldonado A. Biotic and abiotic effects on the intestinal helminth community of the brown rat Rattus norvegicus from Rio de Janeiro, Brazil. J Helminthol 2016; 90: 21-27. https://doi.org/10.1017/S0022149X14000704
  11. Tung KC, Hsiao FC, Wang KS, Yang CH, Lai CH. Study of the endoparasitic fauna of commensal rats and shrews caught in traditional wet markets in Taichung City, Taiwan. J Microbiol Immunol Infect 2013; 46: 85-88. https://doi.org/10.1016/j.jmii.2012.01.012
  12. d'Ovidio D, Noviello E, Pepe P, Del Prete L, Cringoli G, Rinaldi L. Survey of Hymenolepis spp. in pet rodents in Italy. Parasitol Res 2015; 114: 4381-4384. https://doi.org/10.1007/s00436-015-4675-9
  13. Kataranovski M, Mirkov I, Belij S, Popov A, Petrovic Z, Gaci Z, KataranovskiD. Intestinal helminthes infection of rats (Ratus norvegicus) in the Belgrade area (Serbia): the effect of sex, age and habitat. Parasite 2011; 18: 189-196. https://doi.org/10.1051/parasite/2011182189
  14. Malsawmtluangi C, Tandon V. Helminth parasite spectrum in rodent hosts from bamboo growing areas of Mizoram, North-east India. J Parasit Dis 2009; 33: 28-35. https://doi.org/10.1007/s12639-009-0004-5
  15. Wu J, Yi JR, Duan JH, Yin WX, Zhang SY, Liang L. Investigation on infection of Hymenolepis among Rattus noruegicus and Rattus flavipectus in Zhanjiang city, Guangdong province. Chin J Parasit Dis Con 2004; 17: 306-307 (in Chinese).
  16. Li BS, Liu YH, Liu Y, Luo WP, Tong SX, Sophia. Preliminary studies on the correlativity of Hymenolepis nana and Hymenolepis murina infection in Rural Communities, Xinjiang. Endemic Dis Bulletin 2003; 18: 15-17 (in Chinese).
  17. Nkouawa A, Haukisalmi V, Li T, Nakao M, Lavikainen A, Chen X, Henttonen H, Ito A. Cryptic diversity in hymenolepidid tapeworms infecting humans. Parasitol Int 2016; 65: 83-86. https://doi.org/10.1016/j.parint.2015.10.009
  18. Sharma S, Lyngdoh D, Roy B, Tandon V. Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol Res 2016; 115: 4293-4298. https://doi.org/10.1007/s00436-016-5210-3
  19. Qu H, Sun YT, Sun YX, Liu W, Wang FG. Important investigation of zoonotic parasites in Heilongjiang Province. Agricult Technol 1999; 19: 33-36 (in Chinese).
  20. Bessho Y, Ohama T, Osawa S. Planarian mitochondria. I. Heterogeneity of cytochrome coxidase subunit I gene sequences in the freshwater planarian, Dugesia japonica. J Mol Evol 1992; 34: 324-330. https://doi.org/10.1007/BF00160239
  21. Blair D, van Herwerden L, Hirai H, Taguchi T, Habe S, Hirata M, Lai K, UpathamS, Agatsuma T. Relationships between Schistosoma malayensis and other Asian schistosomes deduced from DNA sequences. Mol Biochem Parasitol 1997; 85: 259-263. https://doi.org/10.1016/S0166-6851(96)02827-7
  22. Steinmann P, Cringoli G, Bruschi F, Matthys B, Lohourignon LK, Castagna B, Maurelli MP, Morgoglione ME, Utzinger J, Rinaldi L. FLOTAC for the diagnosis of Hymenolepis spp. infection: proof-of-concept and comparing diagnostic accuracy with other methods. Parasitol Res 2012; 111: 749-754. https://doi.org/10.1007/s00436-012-2895-9
  23. Mirjalali H, Kia EB, Kamranrashani B, Hajjaran H, Sharifdini M. Molecular analysis of isolates of the cestode Rodentolepis nana from the great gerbil, Rhombomys opimus. J Helminthol 2016; 90: 252-255. https://doi.org/10.1017/S0022149X15000115
  24. Macnish MG, Morgan-Ryan UM, Monis PT, Behnke JM, Thompson RC. A molecular phylogeny of nuclear and mitochondrial sequences in Hymenolepis nana (Cestoda) supports the existence of a cryptic species. Parasitology 2002; 125: 567-575. https://doi.org/10.1017/S0031182002002366
  25. Okamoto M, Agatsuma T, Kurosawa T, Ito A. Phylogenetic relationships of three hymenolepidid species inferred from nuclear ribosomal and mitochondrial DNA sequences. Parasitology 1997; 115: 661-666. https://doi.org/10.1017/S0031182097001741
  26. Mohammadzadeh T, Sadjjadi SM, Motazedian MH, Mowlavi GR. Study on the genomic diversity of Hymenolepis nana between rat and mouse isolates by RAPD-PCR. Iran J Vet Res 2007; 8: 16-19.
  27. Cheng T, Gao DZ, Zhu WN, Fang SF, Chen N, Zhu XQ, Liu GH, Lin RQ. Genetic variability among Hymenolepis nana isolates from different geographical regions in China revealed by sequence analysis of three mitochondrial genes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27: 4646-4650.
  28. Foronda P, Lopez-Gonzalez M, Hernandez M, Haukisalmi V, Feliu C. Distribution and genetic variation of hymenolepidid cestodes in murid rodents on the Canary Islands (Spain). Parasit Vectors 2011; 26: 185.
  29. Kang QD, Wei QY, Xie XL, Wu LP, Zhang Z, Fu YH, Li GX, Ma QH, Song ZY, Wang DC. An evaluation on survey of human parasite distribution in Heilongjiang Province. Chin J Parasitol Parasit Dis 1994; S1: 61-63 (In Chinese).
  30. Shi FP, Liu BR. A case of Hymenolepis diminuta in human. J Jiamusi Med Coll 1989; 12 (in Chinese).

Cited by

  1. Molecular genotypes analysis of Cryptosporidium and Hymenolepis in rats on Lombok Island, Indonesia vol.6, pp.2, 2020, https://doi.org/10.14202/ijoh.2020.123-127
  2. The dwarf tapeworm Hymenolepis nana in pet rodents in Slovakia-epidemiological survey and genetic analysis vol.119, pp.2, 2017, https://doi.org/10.1007/s00436-019-06565-7
  3. Prevalence of intestinal parasitic infections among the Bulgarian population over a three year period (2015 - 2017) vol.57, pp.1, 2017, https://doi.org/10.2478/helm-2020-0002
  4. Morphological, Molecular, and Pathological Appraisal of Hymenolepis nana (Hymenolepididae) Infecting Laboratory Mice (Mus musculus) vol.26, pp.2, 2017, https://doi.org/10.1017/s1431927620000161
  5. Comparative comprehensive analysis on natural infections of Hymenolepis diminuta and Hymenolepis nana in commensal rodents vol.58, pp.3, 2017, https://doi.org/10.2478/helm-2021-0027