DOI QR코드

DOI QR Code

Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii

  • Kim, Seon-Hee (Department of Parasitology, Ewha Womans University School of Medicine) ;
  • Bae, Young-An (Department of Microbiology, Gachon University College of Medicine) ;
  • Seoh, Ju-Young (Department of Microbiology, Ewha Womans University School of Medicine) ;
  • Yang, Hyun-Jong (Department of Parasitology, Ewha Womans University School of Medicine)
  • Received : 2017.02.01
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

Keywords

References

  1. White NJ. Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis 2008; 46: 172-173. https://doi.org/10.1086/524889
  2. Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 2013; 26: 165-184. https://doi.org/10.1128/CMR.00079-12
  3. World Health Organization. World Malaria Report: 2016. Geneva, Switzerland, World Health Organization.
  4. Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg. 2015; 93(3 Suppl): 57-68.
  5. Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol Cell Biol 2009; 87: 377-390. https://doi.org/10.1038/icb.2009.27
  6. Nunes JK, Woods C, Carter T, Raphael T, Morin MJ, Diallo D, Leboulleux D, Jain S, Loucq C, Kaslow DC, Brikett AJ. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine 2014; 32: 5531-5539. https://doi.org/10.1016/j.vaccine.2014.07.030
  7. Ouattara A, Laurens MB. Vaccines against malaria. Clin Infect Dis 2015; 60: 930-936. https://doi.org/10.1093/cid/ciu954
  8. Craig AG, Grau GE, Janes C, Kazura JW, Milner D, Barnwell JW, Turner G, Langhorne J; participants of the Hinxton Retreat meeting on Animal Models fro Research on Severe Malaria. The role of animal models for research on severe malaria. PLoS Pathog 2012; 8: e1002401. https://doi.org/10.1371/journal.ppat.1002401
  9. Otto TD, Bohme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, Religa AA, Robertson L, Sanders M, Ogun SA, Cunningham D, Erhart A, Billker O, Khan SM, Stunnenberg HG, Langhorne J, Holder AA, Waters AP, Newbold CI, Pain A, Berriman M, Janse CJ. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol 2014; 12: 86. https://doi.org/10.1186/s12915-014-0086-0
  10. Lamb TJ, Brown DE, Potocnik AJ, Langhorne J. Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 2006; 8: 1-22.
  11. Kappe SH, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science 2010; 328: 862-866. https://doi.org/10.1126/science.1184785
  12. Prudencio M, Mota MM, Mendes AM. A toolbox to study liver stage malaria. Trends Parasitol 2011; 27: 565-574. https://doi.org/10.1016/j.pt.2011.09.004
  13. Ogun SA, Tewari R, Otto TD, Howell SA, Knuepfer E, Cunningham DA, Xu Z, Pain A, Holder AA. Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7: e1001288. https://doi.org/10.1371/journal.ppat.1001288
  14. Burns JM Jr, Dunn PD, Russo DM. Protective immunity against Plasmodium yoelii malaria induced by immunization with particulate blood-stage antigens. Infect Immun 1997; 65: 3138-3145.
  15. Wykes MN, Zhou YH, Liu XQ, Good MF. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. J Immunol 2005; 175: 2510-2516. https://doi.org/10.4049/jimmunol.175.4.2510
  16. Wipasa J, Xu H, Liu X, Hirunpetcharat C, Stowers A, Good MF. Effect of Plasmodium yoelii exposure on vaccination with the 19-kilodalton carboxyl terminus of merozoite surface protein 1 and vice versa and implications for the application of a human malaria vaccine. Infect Immun 2009; 77: 817-824. https://doi.org/10.1128/IAI.01063-08
  17. Hoffman EJ, Weidanz WP, Long CA. Susceptibility of CXB recombinant inbred mice to murine plasmodia. Infect Immun 1984; 43: 981-985.
  18. Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 2006; 1: 346-356. https://doi.org/10.1038/nprot.2006.53
  19. Mount SM. A catalogue of splice junction sequences. Nucleic Acids Res 1982; 10: 459-472. https://doi.org/10.1093/nar/10.2.459
  20. Farley PJ, Srivastava R, Long CA. Sequence of the gene encoding the N-terminal portion of the Plasmodium yoelii yoelii 17XL merozoite surface protein-1 (MSP-1). Gene 1994; 151: 335-336. https://doi.org/10.1016/0378-1119(94)90683-1
  21. Jennings GJ, Toebe CS, van Belkum A, Wiser MF. The complete sequence of Plasmodium berghei merozoite surface protein-1 and its inter- and intra-species variability. Mol Biochem Parasitol 1998; 93: 43-55. https://doi.org/10.1016/S0166-6851(98)00016-4
  22. Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, Rabetafika L, Snounou G, Jones-Engel L, Escalante AA. Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol 2011; 11: 299. https://doi.org/10.1186/1471-2148-11-299
  23. de la Cruz VF, Lal AA, McCutchan TF. Variation among circumsporozoite protein genes from rodent malarias. Mol Biochem Parasitol 1988; 28: 31-38. https://doi.org/10.1016/0166-6851(88)90176-4
  24. Franke ED, Sette A, Sacci J Jr, Southwood S, Corradin G, Hoffman SL. A subdominant CD8(+) cytotoxic T lymphocyte (CTL) epitope from the Plasmodium yoelii circumsporozoite protein induces CTLs that eliminate infected hepatocytes from culture. Infect Immun 2000; 68: 3403-3411. https://doi.org/10.1128/IAI.68.6.3403-3411.2000
  25. Cohen S, McGregor IA, Carrington S. Gamma-globulin and acquired immunity to human malaria. Nature 1961; 192: 733-737. https://doi.org/10.1038/192733a0
  26. Fowkes FJ, Richards JS, Simpson JA, Beeson JG. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med 2010; 7: e1000218. https://doi.org/10.1371/journal.pmed.1000218
  27. Diggs CL, Ballou WR, Miller LH. The major merozoite surface protein as a malaria vaccine target. Parasitol Today 1993; 9 :300-302. https://doi.org/10.1016/0169-4758(93)90130-8
  28. Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 2009; 136: 1445-1456. https://doi.org/10.1017/S0031182009990515
  29. Versiani FG, Almeida ME, Mariuba LA, Orlandi PP, Nogueira PA. N-terminal Plasmodium vivax merozoite surface protein-1, a potential subunit for malaria vivax vaccine. Clin Dev Immunol 2013; 2013: 965841.
  30. Curd RD, Birdsall B, Kadekoppala M, Ogun SA, Kelly G, Holder AA. The structure of Plasmodium yoelii merozoite surface protein 119, antibody specificity and implications for malaria vaccine design. Open Biol 2014; 4: 130091. https://doi.org/10.1098/rsob.130091
  31. Aikawa M, Yoshida N, Nussenzweig RS, Nussenzweig V. The protective antigen of malarial sporozoites (Plasmodium berghei) is a differentiation antigen. J Immunol 1981; 126: 2494-2495.
  32. Zavala F, Cochrane AH, Nardin EH, Nussenzweig RS, Nussenzweig V. Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. J Exp Med 1983; 157: 1947-1957. https://doi.org/10.1084/jem.157.6.1947
  33. Eichinger DJ, Arnot DE, Tam JP, Nussenzweig V, Enea V. Circumsporozoite protein of Plasmodium berghei: gene cloning and identification of the immunodominant epitopes. Mol Cell Biol 1986; 6: 3965-3972. https://doi.org/10.1128/MCB.6.11.3965
  34. Espinosa DA, Gutierrez GM, Rojas-Lopez M, Noe AR, Shi L, Tse SW, Sinnis P, Zavala F. Proteolytic cleavage of the Plasmodium falciparum circumsporozoite protein is a target of protective antibodies. J Infect Dis 2015; 212: 1111-1119. https://doi.org/10.1093/infdis/jiv154
  35. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci USA 1983; 80: 5075-5079. https://doi.org/10.1073/pnas.80.16.5075
  36. Yamada S, Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol 2008; 5: 289-301. https://doi.org/10.2174/157016308786733564
  37. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 1995; 82: 101-110. https://doi.org/10.1016/0092-8674(95)90056-X
  38. Achur RN, Valiyaveettil M, Alkhalil A, Ockenhouse CF, Gowda DC. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem 2000; 275: 40344-40356. https://doi.org/10.1074/jbc.M006398200
  39. Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG. Selective up-regulation of a single distinctly structured var gene in chondroitin sulfate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 2003; 49: 179-191. https://doi.org/10.1046/j.1365-2958.2003.03570.x
  40. Clausen TM, Christoffersen S, Dahlback M, Langkilde AE, Jensen KE, Resende M, Agerbæk M, Andersen D, Berisha B, Ditlev SB, Pinto VV, Nielsen MA, Theander TG, Larsen S, Salanti A. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem 2012; 287: 23332-23345. https://doi.org/10.1074/jbc.M112.348839
  41. Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ 1983; 61: 1005-1016.
  42. Hviid, L, Marinho CR, Staalsoe T, Penha-Goncalves C. Of mice and women: rodent models of placental malaria. Trends Parasitol 2010; 26: 412-419. https://doi.org/10.1016/j.pt.2010.04.010
  43. Chia WN, Goh YS, Renia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5: 586.
  44. Davies DH, Duffy P, Bodmer JL, Felgner PL, Doolan DL. Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33: 7496-7505. https://doi.org/10.1016/j.vaccine.2015.09.059
  45. Franca CT, Hostetler JB, Sharma S, White MT, Lin E, Kiniboro B, Waltmann A, Darcy AW, Li Wai Suen CS, Siba P, King CL, Rayner JC, Fairhurst RM, Mueller I. An antibody screen of a Plasmodium vivax antigen library identifies novel merozoite proteins associated with clinical protection. PLoS Negl Trop Dis 2016; 10: e0004639. https://doi.org/10.1371/journal.pntd.0004639