DOI QR코드

DOI QR Code

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC

ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어

  • Asignacion, Abner Jr. (Department of Electrical Engineering, Changwon National University) ;
  • Park, Seung-kyu (Department of Electrical Engineering, Changwon National University) ;
  • Lee, Min-wook (Department of Electrical Engineering, Changwon National University)
  • Received : 2017.04.12
  • Accepted : 2017.06.07
  • Published : 2017.06.30

Abstract

This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

본 논문은 유연관절로봇의 추종성능과 정합과 비정합 외란 모두에 대한 강인성을 향상시키기 위한 강인한 제어기를 제안한다. 제안된 제어기는 백스테핑 외란관측기(DOB), 수동성기반 제어기(PBC)와 적분슬라이딩모드 제어기(ISMC)가 백스테핑기법 형태로 구성되어 있다. 백스테핑 DOB는 링크측의 비정합 외란을 고려하는데 사용되며 모터측의 기준입력을 제공하는 역할을 한다. IDA-PBC는 모터측의 추종제어를 수행하며 적분슬라이딩모드제어와 결합될 때 공칭제어기의 역할을 하며 전체 공칭제어시스템의 안정도를 보장받도록 한다. 반면에 적분슬라이딩모드제어는 정합조건을 만족시키는 모터측의 외란의 영향을 제거하는데 사용된다. 링크측의 제어기를 설계하는데 있어서는 PD타입의 임피던스제어기와 DOB가 결합됨으로써 강인한 제어특성과 함께 모터측의 기준입력에 적합한 연속적인 입력의 제공이 가능하도록 하였다.

Keywords

References

  1. Ch. Ott, A. Albu-Scaffer, A. Kugi, and G. Hirzinger, "On the Passivity-Based Impedance Control of Flexible Joint Robots," IEEE Trans. on Robotics, vol. 24, no. 2, pp. 416-429, April 2008. https://doi.org/10.1109/TRO.2008.915438
  2. Q. Zhang, Z. Xie, H. Yang, K. Minghe, and H. Cai, "Interconnection and damping assignment passivity-based control for flexible joint robot," IEEE 11th World Congress on Intelligent Control and Automation, pp. 4242-4249, July 2014.
  3. Q. Zhang and G. Liu, "Precise Control of Elastic Joint Robot Using an Interconnection and Damping Assignment Passivity-Based Approach," IEEE/ASME Trans. on Mechatronics, vol. 21, no. 6, pp.2728-2736, Dec. 2016. https://doi.org/10.1109/TMECH.2016.2578287
  4. M. Spong, K, Khorasani, and P. Kokotovic, "An integral manifold approach to feedback control of flexible joint robots," IEEE J. Robot Autom., vol. 3, no. 4, pp. 291-300, Aug. 1987. https://doi.org/10.1109/JRA.1987.1087102
  5. M. Jin, J. Lee, and N. Tsagarakis, "Model-Free Robust Adaptive Control of Humanoid Robots With Flexible Joint," IEEE Transaction on Industrial Electronics, vol. 64, no. 2, pp. 1706-1715, February 2017. https://doi.org/10.1109/TIE.2016.2588461
  6. Z. Jiang and K. Kohara, "Workspace trajectory tracking control of flexible joint robots based on backstepping method," 2016 IEEE TENCON, pp. 3473-3476, Nov. 2016.
  7. S. Kwon, S., Asignacion, A., Park, S., "Control of Flexible Joint Robot Using Integral Sliding Mode and Backstepping," Automation, Control and Intelligent Systems, vol. 4, no. 6, pp. 95-100, Jan. 2016. https://doi.org/10.11648/j.acis.20160406.13
  8. M. Fateh, "Robust control of flexible-joint robots using voltage control strategy," Nonlinear Dyn, vol. 67, no. 2, pp. 1525-1537, Jan. 2012. https://doi.org/10.1007/s11071-011-0086-3
  9. M. Khairudin, Z., Mohamed, and A. Husain, "Dynamic model and robust control of flexible link robot manipulator," TELKOMNIKA (Telecommun. Comput. Electron. Control), vol. 9, no. 2, pp. 279-286, Sep. 2013. https://doi.org/10.12928/telkomnika.v9i2.698
  10. R. Ortega, A. van der Schaft, B. Mashchke, and G. Escobar, "Interconnection and damping assignement passivity-based control of port-controlled Hamiltonian systems," Automatica, vol. 38, pp. 585-596, Jan. 2002. https://doi.org/10.1016/S0005-1098(01)00278-3
  11. R. Ortega and E. Garcia-Canseco, "Interconnection and damping assignment passivity-based control: A survey," European Journal of Control, vol. 10, pp. 432-450, May 2004. https://doi.org/10.3166/ejc.10.432-450
  12. A. Asignacion, S.K. Park, and M.C. Kim, "Robust Impedance Control of High-DOF Robot based on ISMC and DOB," Journal of the Korea Instutute of Information and Communication Engineering, vol. 21, no. 1, pp. 173-179, Jan. 2017. https://doi.org/10.6109/jkiice.2017.21.1.173
  13. M.S. Park, H.G. Ahn, K.P. Kwak and T.S. Yoon, "Robust Trajectory Tracking Control of Mobile Robot Combining PDC and Integral Sliding Mode Control," Journal of the Korea Instutute of Information and Communication Engineering, vol. 19, no. 7, pp. 1964-1704, July 2015.
  14. W. J. Wang and J. Y. Chen, "Passivity-Based Sliding Mode Position Control for Induction Motor Drives," IEEE Trans. on Energy Conversion, vol. 240, no. 2, pp. 4316-321, June 2005.
  15. Z. Fu, L. Liu, and X. Wang, "Passivity Sliding Mode Control of Uncertain Chaotic Systems with Stochastic Disturbance," Hindawi Pub Corp. Journal of Control Science and Engineering, pp. 1-5, Dec. 2014.
  16. S. Farooq, A. Khan, M. Abid., and A. Ammed Khattak, "Passivity-based Sliding Mode Control of Neutral Singular Uncertain Systems with Time Varying Delays and Bounded Matched Disturbances," IEEE Conf. on Frontiers of Information and Technology, Dec. 2012.
  17. L. Wu and W. Zheng, "Passivity-based sliding mode control of uncertain singular time-delay systems," Automatica, vol. 45, no. 9, pp. 2120-2127, Sep. 2009. https://doi.org/10.1016/j.automatica.2009.05.014
  18. Y. Gao, B. Sun, G. Lu, "Passivity-Based Integral Sliding-Mode Control of Uncertain Singularly Perturbed Systems," IEEE Trans. on Circuits and Systems, vol. 58, no. 6, pp. 369-390, June 2011.
  19. Q. Cao and J. Xu, "Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems," IEEE Trans. on Automatic Control, vol. 49, no. 8, pp. 1355-1360, August 2004. https://doi.org/10.1109/TAC.2004.832658
  20. F. Castanos and L. Fridman, "Analysis and Design of Integral Manifolds for Systems with Mismatched Perturbations," IEEE Trans. on Automatic Control, vol. 51, no. 5, pp. 853-858, May 2006. https://doi.org/10.1109/TAC.2006.875008
  21. M. Rubagotti, A. Estrada, F. Castanos, A. Ferrrara, and L. Fridman, "Integral Sliding Mode Control for Nonlinear Systems with Matched and Mismatched Perturbations," IEEE Trans. on Automatic Control, vol. 56, no. 11, pp. 2699-2704, November 2011. https://doi.org/10.1109/TAC.2011.2159420
  22. Y. Choi, K. Yang, W. Kyun, H. Kim, and I. Suh, "On the Robustness and Performance of Disturbance Observers for Second-Order Systems," IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 315-320, Feb 2003. https://doi.org/10.1109/TAC.2002.808491