DOI QR코드

DOI QR Code

Design of MPTCP Congestion Control based on BW measurement for Wireless Networks

무선 환경에서 MPTCP 성능 개선을 위한 대역폭 측정 기반 혼잡 제어 설계

  • Kim, Min Sub (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Lee, Jae Yong (Department of Radio and Information Communications Engineering, Chungnam National University) ;
  • Kim, Byung Chul (Department of Radio and Information Communications Engineering, Chungnam National University)
  • Received : 2017.02.03
  • Accepted : 2017.03.28
  • Published : 2017.06.30

Abstract

In wireless networks, the packet loss due to the bit error is misinterpreted as loss due to the congestion state, so TCP congestion control occurs frequently and performance degradation occurs. This degradation also occurs in MPTCP(Multipath TCP), which is an extension protocol of original TCP. In MPTCP, the overall performance of the multipath is degraded. In this paper, we propose a congestion control scheme which measures the bandwidth on each path of MPTCP and reduces the congestion window size by the measured bandwidth when packet loss occurs, in order to solve the MPTCP performance degradation in the wireless environment. We also implemented the proposed congestion control in the Linux kernel and compared it with the original MPTCP in the testbed and real wireless networks. Experimental results show that the proposed congestion control has better throughput performance than original MPTCP congestion control in the wireless environment.

무선 네트워크에서 TCP는 비트 에러에 인한 패킷 손실을 혼잡상태에 의한 손실로 오인하여 잦은 혼잡제어가 일어나 성능 저하가 발생한다. 이러한 성능 저하는 기존 TCP를 확장한 프로토콜인 MPTCP (Multipath TCP) 에서도 발생하며, MPTCP의 경우 다중 경로의 전체 성능이 저하되는 문제점도 발생한다. 따라서 본 논문에서는 무선 환경에서 MPTCP 성능 저하를 해결하기 위해 MPTCP 각 경로상의 대역폭을 측정하고 패킷 손실이 발생할 때 측정된 대역폭 만큼 혼잡 윈도우 크기를 줄이는 혼잡제어를 제안하였다. 그리고 제안한 혼잡제어를 리눅스커널에 구현 설치하고 무선 환경의 특성을 적용한 테스트베드와 실제 무선 네트워크에서 기존 MPTCP와 비교분석하였다. 실험결과 제안한 혼잡제어가 기존 MPTCP 혼잡제어보다 무선 환경에서 좋은 처리량 성능을 보여주었다.

Keywords

References

  1. A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, "TCP Extensions for Multipath Operation With Multiple Addresses," Internet Requests for Comments, IETF, RFC 6824, Jan. 2013.
  2. F. Lefevre and G. vivier, "Understanding TCP's behavior over wireless links," In Proceeding of the 20th IEEE Symposium on Communications and Vehicular technology, Leuven, pp. 123-130, Aug. 2000.
  3. C. Raiciu, M. Handley, and D. Wischik, "Coupled Congestion Control for Multipath Transport Protocols," Internet Requests for Comments, IETF, RFC 6356, Oct. 2011.
  4. R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J. Y. Le Boudec, "Non-Pareto Optimality of MPTCP: Performance Issues and a Possible Solution," IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1651-1665, Oct. 2013. https://doi.org/10.1109/TNET.2013.2274462
  5. R. Stewart, "Stream Control Tramsmission Protocol," Internet Requests for Comments, IETF, RFC 4960, Sep. 2007.
  6. C. Raiciu, C. Paasch, S. Barre, A. Ford, M. honda, F. Duchene, O. Bonaventure, and M. Handley. "How hard can it be? designing and implementing a deployable multipath tcp," in Proceeding of 9th USENIX Symposium on Networked Systems Design and Implementation, Boston, pp. 29-29, Apr. 2012.
  7. S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi and R. Wang, "TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links," in Proceeding of the 7th Annual International Conference on Mobile Computing and Networking, Rome, July. 2001.
  8. L. A. Grieco and S. Mascolo, "Performance evaluation and comparison of Westwood+, New Reno, and Vegas TCP congestion control," ACM Computer Communication Review, vol. 34, no. 2, pp. 25-38, Apr. 2004. https://doi.org/10.1145/997150.997155
  9. K. Xu, Y. Tian, and N. Ansari, "TCP-Jersey for Wireless IP Communications," In IEEE Journal on Selected Areas in Communication, vol. 22, no. 4, pp. 747-756, May 2004. https://doi.org/10.1109/JSAC.2004.825989
  10. K. J. Astrom, Computer Controlled Systems, Theory and Design, 3th ed. Prentice-Hall. p. 294, 1990.
  11. D. D. Clark and W. Fang, "Explicit allocation of best effort packet delivery service," IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 362-373, Aug. 1998. https://doi.org/10.1109/90.720870
  12. MultiPath TCP Linux Kernel implementaion [Internet]. Available: http://mptcp.info.ucl.ac.be/
  13. M. Carbone, L. Rizzo, "Dummynet Revisited", ACM SIGCOMM Computer Communication Review, vol. 40, Issue. 2, pp. 12-20, Mar. 2010. https://doi.org/10.1145/1764873.1764876
  14. JH. Hwang, J. Yoo, "Packet scheduling for Multipath TCP", in Proceeding of the 7th International Conference on Ubiquitous and Future Networks, Sapporo, pp. 177-179, July 2015.
  15. iPerf - The TCP, UDP and SCTP network bandwidth measurement tool [Internet]. Available: https://iperf.fr/.

Cited by

  1. Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘 vol.25, pp.1, 2021, https://doi.org/10.6109/jkiice.2021.25.1.50