References
- Akaike, H. (1974). A new look at the statistical model identification, Electronic Journal of Probability, 19, 716-723.
- Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178.
- Azzalini, A. (2016). The R package sn: The skew-normal and skew-t distributions (version 1.4-0), http://azzalini.stat.unipd.it/SN.
- Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution, Journal of the Royal Statistical Society. Series B, 65, 367-389. https://doi.org/10.1111/1467-9868.00391
- Bakar, S., Hamzah, N. A., Maghsoudi, M., and Nadarajah, S. (2015). Modeling loss data using composite models, Insurance: Mathematics and Economics, 61, 146-154. https://doi.org/10.1016/j.insmatheco.2014.08.008
- Bakar, S., Nadarajah, S., Adzhar, Z., Mohamed, I. (2016). Gendist: an R package for generated probability distribution models, PLOS ONE, 11, e0160903. https://doi.org/10.1371/journal.pone.0160903
- Burnecki, K., Kukla, G., and Weron, R. (2000). Property insurance loss distribution, Physica A: Statistical Mechanics and its Applications, 287, 269-278. https://doi.org/10.1016/S0378-4371(00)00453-2
- Cooray, K. and Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-pareto model, Scandinavian Actuarial Journal, 2005, 321-334. https://doi.org/10.1080/03461230510009763
- Davison, A. (2003). Statistical Models, Cambridge University Press, Cambridge.
- Davison, A. (2013). The R package SMPracticals: Practicals for use with Davison (2003) "Statistical Models"(version 1.4-2), http://CRAN.R-project.org/package=SMPracticals.
- Eling, M. (2012). Fitting insurance claims to skewed distributions: are the skew-normal and skew student good models?, Insurance: Mathematics and Economics, 51, 239-248. https://doi.org/10.1016/j.insmatheco.2012.04.001
- Embrechts, P., Kluppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, Springer, Berlin.
- Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas, North American Actuarial Journal, 2, 1-25.
- Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2013). The R package copula: Multivariate Dependence with Copulas(version 0.999-16), http://copula.r-forge.r-project.org/.
- Klugman, S. A., Panjer, H. H., and Willmot, G. E. (2004). Loss Models: From Data to Decisions (2nd edition), John Wiley and Sons, New York.
- Lee, K. and Park, H. C. (2012). Comparisons of the fitness for lognormal, Pareto and composite lognormal-Pareto distribution based on the insurance payments data, Journal of the Korean Data Analysis Society, 14, 163-172.
- McNeil, A. I. (1997). Estimating the tails of loss severity distribution using extreme value theory, ASTIN Bulletin, 27, 117-137. https://doi.org/10.2143/AST.27.1.563210
- Nadarajah, S. and Bakar, S. (2014). New composite models for the Danish fire insurance data, Scandinavian Actuarial Journal, 2014, 180-187. https://doi.org/10.1080/03461238.2012.695748
- Owen, D. (1956). Tables for computing bivariate normal probabilities, Annals of Mathematical Statistics, 27, 1075-1090. https://doi.org/10.1214/aoms/1177728074
- Pigeon, M. and Denuit, M. (2011). Composite lognormal?Pareto model with random threshold, Scandinavian Actuarial Journal, 2011, 177-192. https://doi.org/10.1080/03461231003690754
- Preda, V. and Ciumara, R. (2006). Modeling with Weibull-Pareto models, North American Actuarial Journal, 16, 147.
- Scollnik, D. P. M. (2007). On composite lognormal-Pareto models, Scandinavian Actuarial Journal, 2007, 20-33. https://doi.org/10.1080/03461230601110447
- Yun, S. H. et al. (2015). Insurance Industry Outlook and Issues 2015, Korea Insurance Research Institute.