DOI QR코드

DOI QR Code

Inhibitory effects of persimmon (Diospyros kaki Thumb.) against diet-induced hypertriglyceridemia/hypercholesterolemia in rats

떫은감 (Diospyros kaki Thumb.)이 흰쥐의 식이성 이상지질혈증에 미치는 영향

  • Ahn, Youngsook (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Regu, Geberea manuel Meron (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Oh, Eun Kyoung (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University)
  • 안영숙 (이화여자대학교 식품영양학과) ;
  • ;
  • 오은경 (이화여자대학교 식품영양학과) ;
  • 권오란 (이화여자대학교 식품영양학과)
  • Received : 2017.04.18
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

Purpose: This study aimed to investigate the potential of freeze-dried persimmon powder (Diospyros kaki Thumb.) to protect against dyslipidemia induced by a high-fat/cholesterol diet (HFD) in a rat model. Methods: Fifty Wistar rats were randomly divided into five groups: normal control (NC), high-fat/cholesterol control (HC), tannin in HFD (HT, 1% of diet), immature persimmon in HFD (HI, 7% of diet), and mature persimmon in HFD (HM, 7% of diet). Tannin was used as a positive control. Biochemical, molecular, and histopathological changes were observed in the blood and liver. Results: We confirmed that a high fat/cholesterol diet successfully induced dyslipidemia, which was characterized by significantly altered lipid profiles in the plasma and liver. However, oxidized low-density lipoprotein levels, histopathological damage in the liver, and hepatic triglyceride levels were significantly reduced in all HT, HI, and HM groups compared to those in the HF group. In contrast, plasma apolipoprotein B level was significantly reduced only in the HT and HM groups, whereas reduction of the LDL-C level was detected only in the HI group. Although HF-induced sterol regulatory element-binding protein (SREBP) gene expression was significantly reduced in all treated groups, downstream gene expression levels varied among the different groups; significant reduction of fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl-CoA (HMGCR) gene expression was detected only in the HI group, whereas cholesterol $7{\alpha}$-hydroxylase (CYP7A1) gene expression was significantly elevated only in the HM group. Conclusion: Taken together, the data suggest that protection of LDL oxidation and hepatic lipogenesis might be, at least partly, attributed to tannin in persimmons. However, the identified mechanisms varied up to the maturation stage of persimmon. In the case of immature persimmon, modulation of FAS and HMGCR gene expression was prominent, whereas in the case of mature persimmon, modulation of CYP7A1 gene expression was prominent.

본 연구는 성숙도가 다른 떫은감 분말의 이상지질혈증 개선 기능을 확인하기 위하여 Wistar계 흰쥐를 사용하여 시험하였다. 이상지질혈증 유도를 위해 7주간 고지방/고콜레스테롤 식이를 급여하였으며, 미성숙감과 성숙감 건분은 7%, 양성대조군으로 탄닌은 1%의 수준으로 식이에 함께 넣어 같은 기간 동안 제공하였다. 체중의 증가, 혈장과 간 조직의 지질 및 콜레스테롤 수준을 바탕으로 이상지질혈증 모델이 형성되었음을 확인하였다. 탄닌, 성숙감, 미성숙감을 섭취한 경우에는 체중, 혈장 Apo B 및 ox-LDL 수준이 유의적으로 감소하였으며, 특별히 미성숙감은 LDL-C이 감소하는 경향을 나타냈다. 탄닌, 성숙감, 미성숙감의 섭취는 간에서 병리조직학적 손상과 총지질 및 중성지방의 수준을 감소시키는데 유사한 효과를 나타냈다. 그러나 유전자 발현은 서로 다른 양상으로, 탄닌군은 콜레스테롤 합성과 관련된 HMGCR 유전자 발현을 감소시키고, 성숙감은 간에서 담즙산 생성을 통한 콜레스테롤 배출과 관련된 CYP7A1 유전자 발현을 증가시키고, 미성숙감은 지방산 합성과 관련된 FAS 유전자 발현을 억제하는 것으로 나타났다. 이상의 결과로 감은 탄닌 성분을 매개로 콜레스테롤 합성을 억제하고, 성숙도에 따라 미성숙감은 중성지방합성을 억제하고 성숙감은 담즙산 생성을 통한 콜레스테롤 배출을 증가하는 기전으로 콜레스테롤과 중성지질대사 개선을 목적으로 한 기능성 소재로 개발될 가능성이 있는 것으로 판단된다. 향후 변에서 답즙산 분석 등을 통한 기전 확인이 필요할 것이며, 혈중 oxLDL 수준과 같은 항산화 기능과 지질대사 간 상호 영향을 추가적으로 연구해야 할 것으로 사료된다.

Keywords

References

  1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106(25): 3143-3421.
  2. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2015: Korea National Health and Nutrition Examination Survey (KNHANES VI-3). Sejong: Korea Centers for Disease Control and Prevention; 2016.
  3. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001; 5(4): 378-387. https://doi.org/10.1111/j.1582-4934.2001.tb00172.x
  4. Al-Mohaissen MA, Ignaszewski MJ, Frohlich J, Ignaszewski AP. Statin-associated muscle adverse events: update for clinicians. Sultan Qaboos Univ Med J 2016; 16(4): e406-e415. https://doi.org/10.18295/squmj.2016.16.04.002
  5. Duell PB, Connor WE. Vitamin D deficiency is associated with myalgias in hyperlipidemic subjects taking statins. Circulation 2008; 118 (Suppl 18): S470.
  6. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther 2007; 25(10): 1135-1151. https://doi.org/10.1111/j.1365-2036.2007.03307.x
  7. Bian LL, You SY, Park J, Yang SJ, Chung HJ. Characteristics of nutritional components in astringent persimmons according to growing region and cultivar. J Korean Soc Food Sci Nutr 2015; 44(3): 379-385. https://doi.org/10.3746/jkfn.2015.44.3.379
  8. Yokozawa T, Park CH, Noh JS, Roh SS. Role of oligomeric proanthocyanidins derived from an extract of persimmon fruits in the oxidative stress-related aging process. Molecules 2014; 19(5): 6707-6726. https://doi.org/10.3390/molecules19056707
  9. Jang IC, Jo EK, Bae MS, Lee HJ, Jeon GI, Park E, Yuk HG, Ahn GH, Lee SH. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J Med Plant Res 2010; 4(2): 155-160.
  10. Lee YA, Cho EJ, Tanaka T, Yokozawa T. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J Nutr Sci Vitaminol (Tokyo) 2007; 53(3): 287-292. https://doi.org/10.3177/jnsv.53.287
  11. Lee JS, Lee MK, Ha TY, Bok SH, Park HM, Jeong KS, Woo MN, Do GM, Yeo JY, Choi MS. Supplementation of whole persimmon leaf improves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem Toxicol 2006; 44(11): 1875-1883. https://doi.org/10.1016/j.fct.2006.06.014
  12. Matsumoto K, Yokoyama S, Gato N. Hypolipidemic effect of young persimmon fruit in C57BL/6.KOR-ApoEshl mice. Biosci Biotechnol Biochem 2008; 72(10): 2651-2659. https://doi.org/10.1271/bbb.80319
  13. Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. J Nutr 1998; 128(11): 2023-2027. https://doi.org/10.1093/jn/128.11.2023
  14. Matsumoto K, Yokoyama S, Gato N. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother Res 2010; 24(2): 205-210. https://doi.org/10.1002/ptr.2911
  15. Gorinstein S, Leontowicz H, Leontowicz M, Jesion I, Namiesnik J, Drzewiecki J, Park YS, Ham KS, Giordani E, Trakhtenberg S. Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition 2011; 27(7-8): 838-846. https://doi.org/10.1016/j.nut.2010.08.015
  16. Zou B, Ge ZZ, Zhang Y, Du J, Xu Z, Li CM. Persimmon tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing $NF-{\kappa}B$activation and inflammatory responses in high-fat diet rats. Food Funct 2014; 5(7): 1536-1546. https://doi.org/10.1039/C3FO60635J
  17. Zou B, Li C, Chen J, Dong X, Zhang Y, Du J. High molecular weight persimmon tannin is a potent hypolipidemic in high-cholesterol diet fed rats. Food Res Int 2012; 48(2): 970-977. https://doi.org/10.1016/j.foodres.2012.05.024
  18. Matsumoto K, Kadowaki A, Ozaki N, Takenaka M, Ono H, Yokoyama S, Gato N. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo. Phytother Res 2011; 25(4): 624-628. https://doi.org/10.1002/ptr.3306
  19. Matsumoto K, Yokoyama S. Induction of uncoupling protein-1 and -3 in brown adipose tissue by kaki-tannin in type 2 diabetic NSY/Hos mice. Food Chem Toxicol 2012; 50(2): 184-190. https://doi.org/10.1016/j.fct.2011.10.067
  20. Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The influence of persimmon peel and persimmon pulp on the lipid metabolism and antioxidant activity of rats fed cholesterol. J Nutr Biochem 1998; 9(4): 223-227. https://doi.org/10.1016/S0955-2863(98)00003-5
  21. Gorinstein S, Kulasek GW, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M, Trakhtenberg S. The effects of diets, supplemented with either whole persimmon or phenol-free persimmon, on rats fed cholesterol. Food Chem 2000; 70(3): 303-308. https://doi.org/10.1016/S0308-8146(00)00072-8
  22. Park YS, Leontowicz H, Leontowicz M, Namiesnik J, Jesion I, Gorinstein S. Nutraceutical value of persimmon (Diospyros kaki Thunb.) and its influence on some indices of atherosclerosis in an experiment on rats fed cholesterol-containing diet. Adv Hortic Sci 2008; 22(4): 250-254.
  23. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226(1): 497-509.
  24. Seong JH, Han JP. The qualitative differences of persimmon tannin and the natural removal of astringency. Korean J Postharvest Sci Technol 1999; 6(1): 66-70.
  25. Beninger CW, Hosfield GL. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 2003; 51(27): 7879-7883. https://doi.org/10.1021/jf0304324
  26. Serrano J, Puupponen-Pimia R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53 Suppl 2: S310-S329. https://doi.org/10.1002/mnfr.200900039
  27. Gu HF, Li CM, Xu Y, Hu W, Chen M, Wan Q. Structural features and antioxidant activity of tannin from persimmon pulp. Food Res Int 2008; 41(2): 208-217. https://doi.org/10.1016/j.foodres.2007.11.011
  28. Gato N, Kadowaki A, Hashimoto N, Yokoyama S, Matsumoto K. Persimmon fruit tannin-rich fiber reduces cholesterol levels in humans. Ann Nutr Metab 2013; 62(1): 1-6. https://doi.org/10.1159/000343787
  29. Karaman S, Toker OS, Yuksel F, Cam M, Kayacier A, Dogan M. Physicochemical, bioactive, and sensory properties of persimmonbased ice cream: technique for order preference by similarity to ideal solution to determine optimum concentration. J Dairy Sci 2014; 97(1): 97-110. https://doi.org/10.3168/jds.2013-7111
  30. Lee SH. Diagnosis and treatment of dyslipidemia. Korean J Med 2008; 74(4): 358-362.
  31. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 1998; 101(11): 2331-2339. https://doi.org/10.1172/JCI2961
  32. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev 2006; 86(2): 465-514. https://doi.org/10.1152/physrev.00025.2005
  33. Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Sato R, Kimura S, Ishibashi S, Yamada N. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 2002; 43(8): 1220-1235.
  34. Willnow TE, Sheng Z, Ishibashi S, Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 1994; 264(5164): 1471-1474. https://doi.org/10.1126/science.7515194
  35. Osono Y, Woollett LA, Herz J, Dietschy JM. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest 1995; 95(3): 1124-1132. https://doi.org/10.1172/JCI117760
  36. Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36(7): 440-451. https://doi.org/10.1016/j.tips.2015.04.002
  37. Venkateswaran A, Repa JJ, Lobaccaro JM, Bronson A, Mangelsdorf DJ, Edwards PA. Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem 2000; 275(19): 14700-14707. https://doi.org/10.1074/jbc.275.19.14700
  38. Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol $7{\alpha}$-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000; 275(15): 10918-10924. https://doi.org/10.1074/jbc.275.15.10918
  39. Matsumoto K, Takekawa K. Comparison of the effects of three persimmon cultivars on lipid and glucose metabolism in high-fat diet-fed mice. J Nutr Sci Vitaminol (Tokyo) 2014; 60(5): 340-347. https://doi.org/10.3177/jnsv.60.340

Cited by

  1. studies vol.51, pp.4, 2018, https://doi.org/10.4163/jnh.2018.51.4.275
  2. Quality Properties of Whole Wheat Flour Sourdough Bread Using Sweet Persimmon Starter vol.34, pp.3, 2018, https://doi.org/10.9724/kfcs.2018.34.3.263
  3. 이상지질혈증 동물 모델을 이용한 솔잎 착즙액 첨가 설기떡의 지질개선 효과 vol.52, pp.1, 2019, https://doi.org/10.4163/jnh.2019.52.1.6
  4. Persimmon flours as functional ingredients in spaghetti: chemical, physico-chemical and cooking quality vol.14, pp.3, 2017, https://doi.org/10.1007/s11694-020-00411-6
  5. Effects of Controlled Atmosphere Storage of ‘Sangjudungsi’ Persimmon vol.24, pp.2, 2020, https://doi.org/10.13050/foodengprog.2020.24.2.133