DOI QR코드

DOI QR Code

Deep learning-based product image classification system and its usability evaluation for the O2O shopping mall platform

딥 러닝 기반 쇼핑몰 플랫폼용 상품 이미지 자동 분류 시스템 및 사용성 평가

  • 성재경 (세종대학교 컴퓨터공학과) ;
  • 박상민 (세종대학교 컴퓨터공학과) ;
  • 신상윤 (세종대학교 컴퓨터공학과) ;
  • 김영복 (세종대학교 컴퓨터공학과) ;
  • 김용국 (세종대학교 컴퓨터공학과)
  • Received : 2017.05.02
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

In this paper, we propose a system whereby one can automatically classifies categories based on image data of the products for a shopping mall platform. Many products sold within internet shopping malls are classified their category defined by the same use of product names and products. However, it is difficult to search by category classification when the classification of the product is uncertain and the product classified by the shopping mall seller judgment is different from the purchasing user judgment. We proposes classification and retrieval method by Deep Learning technique solely using product image. The system can categorize products by using their images and its speed and accuracy are quantified using test data. The performance is evaluated with the test data. In addition, its usability is tested with the participants.

본 논문은 쇼핑몰 플랫폼에 있는 상품을 이미지 기반으로 카테고리를 자동 분류하는 시스템 구현에 관한 연구내용이다. 인터넷 쇼핑몰에서 판매되는 수많은 제품은 용도 중심으로 정의된 카테고리 구조 속에서 제품을 분류하고 있다. 하지만 상품의 분류가 불확실하여 쇼핑몰 판매자 판단으로 분류된 상품과 구매 사용자 판단이 다를 경우는 카테고리 분류에 의한 검색이 어렵다. 본 연구에서는 상품 이미지를 이용하여 딥 러닝(Deep Learning) 기술에 의한 분류와 검색 방법을 제안하며, 상품 이미지만으로 분류를 수행 한 후, 검증 데이터를 통해서 그 속도와 정확도를 수치화하였다. 또한, 성능 비교는 동일한 검증 데이터를 사용하여 실험 참가자의 설문 테스트를 통해서 그 사용성 평가를 실시하였다.

Keywords

References

  1. Kyu-dong Kim, Yung-mok Yu, Jeong-lae Kim, "A Study on the Influence of Mobile Commerce Characteristics Perception on Mobile Shopping Intentions", JIIBC 2013-6-39, 2013. DOI: https://doi.org/10.7236/JIIBC.2013.13.5.297
  2. Gi-Ryong Choi, Hye-Wuk Jung and Jee-Hyoung Lee "Contents-based Image Retrieval System Design of Shopping", Proceedings of KIIS Spring Conference, Vol. 22, No. 1, 2012.
  3. Namhee Yoon, Eun Young Kim, "An Exploratory Study of QR Code Utilization for Retailers' Multichannel Strategy", eISSN 2287-5743, Fashion & Text. Res Vol. 16, No. 5, pp.730-744, 2014. DOI: https://doi.org/10.5805/SFTI.2014.16.5.730
  4. Seo-Young Han, Yunjin Cho, Yuri Lee, "The Effect of the Fashion Product Classification Method in Online Shopping Sites", Vol. 40, No. 2 p.287-304, 2016. DOI: https://doi.org/10.5850/JKSCT.2016.40.2.287
  5. Won-Tae Lee, JangMook Kang, "A study on Model of Personal Information Protection based on Artificial Intelligence Technology or Service" JIIBC, Apl 2016 DOI: https://doi.org/10.7236/JIIBC.2016.16.4.1
  6. http://www.edaily.co.kr/news/NewsRead.edy?SCD=JE41&newsid=03653926615866272&DCD=A00504&OutLnkChk=Y
  7. Chung, S. H, Goswami, A, Lee, H, & Hu, J. The impact of images on user clicks in product search. In Proceedings of the Twelfth International Workshop on Multimedia Data Mining (pp. 25-33). ACM, Aug 2012.
  8. D. Lowe, "Object Recognition from Local Scale Invariant Features," In International Conference on Computer Vision, pp. 1150-1157, 1999.
  9. D. Lowe, "Distinctive Image Features from Scale Invariant Keypoints," International Journal of Computer Vision, vol.2, no.60, pp. 91-110, 2004.
  10. Bell. S, & Bala. K. "Learning visual similarity for product design with convolutional neural networks", ACM Transactions on Graphics (TOG), 34(4), 98, 2015
  11. Veit. A, Kovacs. B, Bell S, McAuley. J, Bala. K, & Belongie, S, "Learning visual clothing style with heterogeneous dyadic co-occurrences", In Proceedings of the IEEE International Conference on Computer Vision (pp. 4642-4650), 2015.
  12. http://www.etnews.com/20170203000337
  13. http://www.newsis.com/view/?id=NISX20170329_0014796184&cID=10402&pID=13000
  14. https://www.amazon.com/
  15. Yeon-gyu Kim, Eui-young Cha, "Streamlined GoogLeNet Algorithm Based on CNN for Korean Character Recognition", J. Korea Inst. Inf. Commun. Eng. Vol. 20, No. 9 : 1657-1665, Sep 2016. DOI: https://doi.org/10.6109/jkiice.2016.20.9.1657
  16. Seung-Cheol Baek, "Fast and All-Purpose Area-Based Imagery Registration Using ConvNets", Journal of KIISE, Vol. 43, No. 9, pp. 1034-1042, 2016. DOI: https://doi.org/10.5626/JOK.2016.43.9.1034
  17. Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, Serge Belongie, "Deep Learning of Binary Hash Codes for Fast Image Retrieval", 2015.
  18. A. Krizhevsky, I. Sutskever, G. E. Hinton, "Imagenet classification with deep convolutional neural networks", in: Advances in neural information processing systems, pp. 1097-1105, 2012

Cited by

  1. Multi Scale Object Detection Based on Single Shot Multibox Detector with Feature Fusion and Inception Network vol.16, pp.10, 2018, https://doi.org/10.14801/jkiit.2018.16.10.93