DOI QR코드

DOI QR Code

Experimental Study on the Supersonic Jets at Low Operating Pressure Ratio

낮은 작동 압력비의 초음속 제트에 대한 실험적 연구

  • Lee, Jae Hyeok (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Zhang, Guang (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Tae Ho (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 이재혁 (국립 안동대학교 기계공학과) ;
  • ;
  • 김태호 (국립 안동대학교 기계공학과) ;
  • 김희동 (국립 안동대학교 기계공학과)
  • Received : 2017.03.07
  • Accepted : 2017.04.10
  • Published : 2017.07.01

Abstract

An experimental study on supersonic jets produced by supersonic nozzles at low operating pressure ratio is conducted. In the present experiments, particle image velocimetry (PIV) was employed to quantitatively specify the jet flowfield, and a color Schlieren optical method was applied to observe the same jets qualitatively. Convergent-divergent nozzles were used to generate the jet flow with design Mach numbers of 1.5 and 1.8. Nozzle pressure ratios (NPRs) were varied from 4 to 7. A good comparison of the jet size from the Schlieren images with the theoretical values is obtained. The obtained images clearly showed the major features of the under-expanded jet and over-expanded jet.

본 연구에서는 초음속 노즐로부터 방출되는 초음속 제트유동의 정량적 가시화 실험 연구가 이루어졌다. 최근 카메라와 가시화 장비의 발달로 비압축성 유동뿐 아니라 압축성 유동 조건에서도 가시화 실험이 가능해졌다. 본 연구의 실험은 노즐 압력비 $p_0/p_b=4$, 5, 6, 7에 대해 $M_d=1.5$, 1.8인 축소확대 노즐에서 방출되는 음속 및 초음속 제트에 대해 PIV와 쉴리렌 가시화 실험을 수행하였다. PIV는 제트 유동장의 정량적 정보를 제공하며, 컬러 쉴리렌 기법과 동일한 실험조건을 적용하였다. 정량적 결과는 쉴리렌 결과와 비교하였으며, 쉴리렌의 제트는 이론적 해석과 비교하였다. 특히, 노즐 출구부근에서 발생하는 유동의 팽창 상태에 따라 달라지는 유동특성을 자세히 조사하였다.

Keywords

References

  1. Mate, B., Graur, I. A., Elizarova, T., Chirokov, I., Tejeda, G., Feranandez, J. M. and Montero, S., 2001, "Experimental and Numerical Investigation of an Axisymmetric Supersonic Jet," Journal of Fluid Mechanics, Vol. 426, pp. 177-197. https://doi.org/10.1017/S0022112000002329
  2. Chang, I. S. and Chow, W. L., 1974, "Mach Disk from Underexpanded Axisymmetric Nozzle Flow," AIAA Journal, Vol. 12, No. 8, pp. 1079-1082. https://doi.org/10.2514/3.49415
  3. Kim, H. D. and Shin, H. S., 1996, "Numerical Study on Under-Expanded Jets Through a Supersonic Nozzle (Part 2)," Trans. Korean Soc. Mech. Eng. B, Vol. 20, No. 6, pp. 1994-2004. https://doi.org/10.22634/KSME-B.1996.20.6.1994
  4. Dacidorm, W. and Penner, S. S., 1971, "Shock Standoff Distances and Mach-Disk Diameters in Underexpanded Sonic Jets," AIAA Journal, Vol. 9, No. 8, pp. 1651-1653. https://doi.org/10.2514/3.6410
  5. Abbett, M., 1971, "Mach Disk in Underexpanded Exaust Plumes," AIAA Journal, Vol. 9, No. 3, pp. 512-514. https://doi.org/10.2514/3.6212
  6. Crist, S., Sherman, P. M. and Glass, D. R., 1966, "Study of the Higly Underexpanded Sonic Jet," AIAA Journal, Vol. 4, No. 1, pp. 68-71. https://doi.org/10.2514/3.3386
  7. Addy, A. L., 1981, "Effect of Axisymmetric Sonic Nozzle Geometry on Mach Disk Chracteristics," AIAA Journal, Vol. 19, No. 1, pp. 121-122. https://doi.org/10.2514/3.7751
  8. Matsuo, S., Tanaka, M., Otobe, Y., Kashimura, H., Kim, H. D. and Setoguchi, T., 2004, "Effect of Axisymmetric Sonic Nozzle Geometry on Characteristics of Supersonic Air Jet," Journal of Thermal Science, Vol. 13, No. 2, pp. 121-126. https://doi.org/10.1007/s11630-004-0019-2
  9. Haerting, J., Havermann, M., Rey, C. and George, A., 2002, "Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows," AIAA Journal, Vol. 40, No. 6, pp. 1056-1060. https://doi.org/10.2514/2.1787
  10. Wiley, A., Kumar, R. and Alvi, F., 2010, "Noise and Flowfield Characteristics of a Supersonic Jet Impinging on a Porous Surface," AIAA Journal, Vol. 4, No. 7.
  11. Lou, H., Shih, C. and Alvi, F. S., 2003, "A PIV Study of Supersonic Impinging Jet," AIAA/CEAS Aeroacoustics Conference.
  12. Oosthuizen, P. H. and Carscallen, W. E., 2008, "Introduction to Compressible Fluid Flow," CRC Press, pp. 224-241.
  13. Raffel, M., Willert, C., Wereley, S. and Kompenhans, J., 2007, "Particle Image Velocimetry: A Partical Guide," Springer, pp. 3-13.
  14. Kleine, H. and Gronig, H., 1990, "Color Schlieren Methods in Shock Wave Research," Shock Waves, Vol. 1, pp. 51-63.