DOI QR코드

DOI QR Code

Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect

방향별 후류를 고려한 풍력발전단지 연간 에너지 생산량 예측 프로그램 개발 및 적용

  • Yang, Kyoungboo (Graduate School of Wind Energy Engineering, Jeju Nat'l Univ.) ;
  • Cho, Kyungho (Dept. of Mechatronics Engineering, Jeju Nat'l Univ.) ;
  • Huh, Jongchul (Dept. of Mechanical Engineering, Jeju Nat'l Univ.)
  • 양경부 (제주대학교 풍력공학부) ;
  • 조경호 (제주대학교 메카트로닉스공학과) ;
  • 허종철 (제주대학교 기계공학과)
  • Received : 2017.02.15
  • Accepted : 2017.04.20
  • Published : 2017.07.01

Abstract

For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.

풍력발전단지에서 연간 에너지 생산량 예측의 정확도를 위해서는 바람 방향별 후류영향에 의한 풍속감소와 이에 따른 발전량 손실을 효과적으로 계산하여야 한다. 본 연구에서는 연간 에너지 생산량 예측을 위하여 방향별 후류영향을 고려한 계산 프로그램을 개발하고, 예측 적합성을 확인하기 위해 실제 풍력발전단지의 연간 에너지 생산량 분석 결과 및 기존 상용 소프트웨어의 계산결과와 비교하였다. 적용된 계산식들은 기존 이론들을 바탕으로 하고 있어 상용 소프트웨어와 동일하지만 풍향별 후류영향 범위의 계산과정에서 차이가 있다. 비교결과 개발 프로그램은 실제 풍력발전단지 전체 시스템 이용율에 1% 이내로 근접하였고 기존 상용 프로그램을 이용한 예측 결과보다 2% 이상 실제 연간 시스템 이용율에 근접하는 결과를 보여주었다.

Keywords

References

  1. Ko, K. N., Park, M. H. and Huh, J. C., 2013, "An Analysis of Wake Effect in a Wind Farm," Journal of the Korean Society for Power System Engineering, Vol. 17, No. 2, pp. 13-20.
  2. Wagner, M., Day, J. and Neumann, F., 2013, "A Fast and Effective Local Search Algorithm for Optimizing the Placement of Wind Turbines," Renewable Energy, 51, pp. 64-70. https://doi.org/10.1016/j.renene.2012.09.008
  3. Rahbari, O., Vafaeipour, M., Fazelpour, F., Feidt, M. and Rosen, A. M., 2014, "Towards Realistic Designs of Wind Farm Layout: Application of a Novel Placement Selector Approach," Energy Conversion and Management, 81, pp. 242-254. https://doi.org/10.1016/j.enconman.2014.02.010
  4. Park, J. and Law, H. K., 2015, "Layout Optimization for Maximizing Wind Farm Power Production using Sequential Convex Programming," Applied Energy, 151, pp. 320-334. https://doi.org/10.1016/j.apenergy.2015.03.139
  5. Kim, Y. H. and Lim, H. C., 2010, "Study on Development of Onshore Wind Farm and Estimation of Wind Energy Production," Journal of the Wind Engineering Institute of Korea, Vol. 14, No. 1, pp. 29-37.
  6. Park, K. S., Ryu, K. W. and Kim, H. G., 2015, "Wake Losses and Repositioning of Wind Turbines at Wind Farm," Journal of the Korean Solar Energy Society, Vol. 35, No. 3, pp. 17-25. https://doi.org/10.7836/kses.2015.35.3.017
  7. Park, M. H. and Kim, B. S., 2016, "Optimal Micrositing and Annual Energy Production Prediction for Wind Farm Using Long-term Wind Speed Correlation Between AWS and MERRA," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 4, pp. 201- 212. https://doi.org/10.3795/KSME-B.2016.40.4.201
  8. Woo, J., Kim, H., Kim, B., Paek, I. and Yoo, N., 2012, "AEP Prediction of a Wind Farm in Complex Terrain - WindPRO Vs. WindSim," Journal of the Korean Solar Energy Society, Vol. 32, No. 6, pp. 1-10. https://doi.org/10.7836/kses.2012.32.6.001
  9. Hau, E., 2006, Wind Turbines, Springer, Berlin, pp. 503-511.
  10. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E., 2001, Wind Energy, John Wiley & Sons, New Jersey, pp. 11-16.
  11. Jensen, N. O., 1983 A note on wind generator interaction, RISO-M-2411, Riso National Laboratory, Denmark, pp. 5-8.
  12. Katic, I., Hojstrup, N. and Jensen, N. O., 1986, "A Simple Model for Cluster Efficiency," European Wind Energy Association Conference, pp. 407-410.
  13. Larsen, G. C., 1988, A Simple Wake Calculation Procedure, RISO-M-2760, Riso National Laboratory, Denmark, pp. 7-13.
  14. Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S. and Hojstrup, J., 2006, "Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms," Wind Energy, 9, pp. 39-53. https://doi.org/10.1002/we.189
  15. Ainslie, J.F., 1988, "Calculating the Flowfield in the Wake of Wind Turbines," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 27, Issues 1-3, pp. 213-224. https://doi.org/10.1016/0167-6105(88)90037-2
  16. Jeon, S. H., Go, Y. J., Kim, B. S. and Huh, J. C., 2016, "Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 1, pp. 21-29. https://doi.org/10.3795/KSME-B.2016.40.1.021
  17. Sorensen, J. N. and Shen, W. Z., 2002, "Numerical Modeling of Wind Turbine Wakes," Journal of Fluids Engineering, Vol. 124, No. 2, pp. 393-399. https://doi.org/10.1115/1.1471361
  18. Schepers, J. G., 2003, Validation and improvement of ECN's wake model, ECN-C-03-034, Energy research Centre of the Netherlands, Netherlands, pp. 9-19.
  19. Lybech, M., 2005, Introduction to Wind Turbine Wake Modelling and Wake Generated Turbulence, EMD International A/S, Denmark, pp. 5-11.