Improved Meet-in-the-Middle Attacks on Crypton and mCrypton

Jingyi Cui ${ }^{1}$, Jiansheng Guo ${ }^{1,2^{*}}$, Yanyan Huang ${ }^{1}$ and Yipeng Liu ${ }^{1}$
${ }^{1}$ Zhengzhou Information Science and Technology Institute Zhengzhou, P.R. China
[e-mail: xd_cjy@126.com]
${ }^{2}$ Science and Technology on Information Assurance Laboratory
Beijing, P.R. China
[tsg_31@126.com;]
*Corresponding author: Jiansheng Guo

Received September 14, 2016; revised February 9, 2017; accepted March 4, 2017; published May 31, 2017

Abstract

Crypton is a SP-network block cipher that attracts much attention because of its excellent performance on hardware. Based on Crypton, mCrypton is designed as a lightweight block cipher suitable for Internet of Things (IoT) and Radio Frequency Identification (RFID). The security of Crypton and mCrypton under meet-in-the-middle attack is analyzed in this paper. By analyzing the differential properties of cell permutation, several differential characteristics are introduced to construct generalized δ-sets. With the usage of a generalized δ-set and differential enumeration technique, a 6 -round meet-in-the-middle distinguisher is proposed to give the first meet-in-the-middle attack on 9-round Crypton-192 and some improvements on the cryptanalysis of 10 -round Crypton-256 are given. Combined with the properties of nibble permutation and substitution, an improved meet-in-the-middle attack on 8round mCrypton is proposed and the first complete attack on 9-round mCrypton-96 is proposed.

Keywords: Cryptanalysis, Crypton, mCrypton, meet-in-the-middle attack, generalized δ set, differential enumeration

[^0]
1. Introduction

C
Cypton [1] is one of the fifteen candidates for AES [2]. Inspired by Square [3], Crypton has a SPN structure and owns many advantages that attract much attation, such as: identity of encryption and decryption, well-proven security, excellent performance on hardware and general applicability for various platforms. There are two versions of Crypton, Crypton v0.5 [4] and Crypton v1.0 [1]. The designers proposed Crypton v1.0 by modifying the key schedule and S-boxes in Crypton v0.5. With the development of IoT, RFID, Smart City[5] and Ad Hoc network[6], the security of these systems[7,8] becomes popular and the demand of block ciphers suitable for these resource-constrained environments is increasing. In 2006, Lim et al. [9] designed a lightweight block cipher mCrypton based on Crypton. The analysis on the security of Crypton and mCrypton could further develop the research on SPN-based block ciphers.

Many researchers have done deeply research on Crypton and mCrypton in recent years. In 2010, Mala et al. [10] gave an impossible differential attack on 7-round Crypton. In 2011, Wei et al. [11] proposed a related-key impossible differential attack on Crypton. In 2013, Kang et al. [12] gave the collision attacks on Crypton-192/256 and mCrypton -96/128. In 2014, Song et al. [13] proposed the biclique attacks on full-round Crypton -256 and mCrypton -128 . Hao et al. [14] analyzed the security of mCrypton under meet-in-the-middle attack. In 2015, Shakiba et al. improved the biclique attacks on full-round Crypton [15] and mCrypton [16]. Jeong et al. [17] improved the biclique attack on full-round mCrypton. In 2016, Hao [18] introduced several meet-in-the-middle attacks on 10-round Crypton-256. Li and Jin [19] gave meet-in-the-middle attacks on 8-round mCrypton-96 and 9-round mCrypton-128. In CRYPTON 2016, Derbez et al. [20] proposed a search algorithm for generalized meet-in-the-middle attack and impossible differential attack. They simply estimated the security of 11 -round Crypton-256, 9 -round mCrypotn- 96 and 10 -round mCrypton-128 under meet-in-the-middle attack but without complete attacks.

Meet-in-the-middle attack was first proposed by Diffie and Hellman [21] in 1977. It is a powerful tool in the analysis of AES-like block cipher. In FSE 2008, Demirci et al. [22] introduced a 5-round meet-in-the-middle distinguisher to attack AES. In ASIACRYPT 2010, Dunkelman et al. [23] proposed several techniques to further improve the attacks on AES which are widely used now. In EUROCRYPT 2013, Derbez et al. [24] improved the meet-in-the-middle attacks on AES with the rebound-like idea. In FSE 2014, Li et al. [25] proposed key-dependent sieve technique to reduce the memory complexity and attacked 9round AES-192 with a 5-round distinguisher. In 2015, Li et al. [26] gave the first 6-round distinguisher with the property of the linear transformation to attack 10-round AES-256.

In Section 2, notions used in this paper and the descriptions of Crypton and mCrypton are given. Section 3 proposes the related properties of Crypton and mCrypton. Section 4 presents the meet-in-the-middle attacks on Crypton with the usage of generalized δ-sets and properties of bit permutation. Section 5 gives the improved meet-in-the-middle attacks on 8round and 9-round mCrypton. Section 6 concludes the whole paper.

2. Preliminaries

2.1 Notations

The following notations are used in the rest of this paper.
x_{i} : The i-th round state after key addition σ;
y_{i} : The i-th round state after nonliner substitution γ;
z_{i} : The i-th round state after bit permutation π;
w_{i} : The i-th round state after cell transposition τ;
$x_{i, \text { col }(j)}$: The j-th column of x_{i};
$x_{i, \text { row }(j)}$: The j-th row of x_{i};
$k_{e i}$: The i-th round subkey;
$k_{e i}^{*}$: The i-th round subkey after $\pi^{-1} \circ \tau^{-1}$, satisfies $k_{e i}=\tau \circ \pi\left(k_{e i}^{*}\right)$;
$x_{i}[j]$: The j-th cell of x_{i};
$\ll a$: Left rotation of 32-bit word by a bits;
$\ll{ }_{b}^{i}$: Left rotation of each byte in 32-bit word by i bits.

2.2 Description of Crypton

Crypton is a SPN-based block cipher family. The block size is 128 -bit and the key size is $64+32 k(0 \leq k \leq 6)$. It has 12 rounds and which are numbered 1 to 12 . A 128-bit state of Crypton can be indexed as Fig. 1 shows. The number i means the i-th byte of the 128-bit state, $(i=0,1, \ldots, 15)$.

3	2	1	0
7	6	5	4
11	10	9	8
15	14	13	12
a_{13}	a_{12}	a_{11}	a_{10}
a_{23}	a_{22}	a_{21}	a_{20}
a_{33}	a_{32}	a_{31}	a_{30}

Fig. 1. The state of Crypton
The round function is consisted of four transformations: nonlinear transformation γ, bit permutation π, byte transposition τ, key addition σ. The details are shown below:

Nonlinear Substitution γ : There are 4 different 8 -bit S-boxes $S_{i}(0 \leq i \leq 3)$, for $S_{2}=S_{0}^{-1}, \quad S_{3}=S_{1}^{-1}$. Crypton applies two different layers, γ_{o} in the odd round and γ_{e} in the even round.

Bit Permutation π : By using four masking bytes $m_{0}=0 x f c, m_{1}=0 x f c, m_{2}=0 x c f$, $m_{3}=0 x 3 f$, the bit permutation π mixes each column with $\pi_{i}(0 \leq i \leq 3)$:

$$
\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\pi_{i}\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \Leftrightarrow b_{j}=\oplus_{k=0}^{3}\left(m_{i+j+k \bmod 4} \wedge a_{k}\right)
$$

There are two layers applied in Crypton, π_{o} in the odd round and π_{e} in the even round.

$$
\pi_{o}(A)=\left(\pi_{3}\left(A^{3}\right), \pi_{2}\left(A^{2}\right), \pi_{1}\left(A^{1}\right), \pi_{0}\left(A^{0}\right)\right), \pi_{e}(A)=\left(\pi_{1}\left(A^{3}\right), \pi_{0}\left(A^{2}\right), \pi_{3}\left(A^{1}\right), \pi_{2}\left(A^{0}\right)\right) .
$$

Byte Tansposition τ : Move the (i,j)-th byte to the (j,i)-th position as $B=\tau(A) \Leftrightarrow b_{i j}=a_{j i}$.

Key Addition σ : The subkey is XORed to the corresponding state.
The whole encryption of Crypton needs to XOR the pre-whitening key at the beginning and add an output transformation $\phi_{e}=\tau \circ \pi_{e} \circ \tau$ to ensure the identity of encrypton and decryption. Similarly, we define $\phi_{o}=\tau \circ \pi_{o} \circ \tau$.

The key schedule of Crypton utilizes the master key to generate 52 32-bit words to construct 13 subkeys. The key schedule can be divided into two phase:

Generating Expand Keys Fill 0 to the left of the master key to get a 256-bit key $K=k_{31} \ldots k_{1} k_{0}$. Divide K into 8 32-bit words:

$$
\begin{array}{ll}
U[0]=k_{6} k_{4} k_{2} k_{0} & V[0]=k_{7} k_{5} k_{3} k_{1} \\
U[1]=k_{14} k_{12} k_{10} k_{8} & V[1]=k_{15} k_{13} k_{11} k_{9} \\
U[2]=k_{22} k_{20} k_{18} k_{16} & V[2]=k_{23} k_{21} k_{19} k_{17} \\
U[3]=k_{30} k_{28} k_{26} k_{24} & V[3]=k_{31} k_{29} k_{27} k_{25}
\end{array}
$$

Using U, V, generate expand keys E_{e} :
$1 U^{\prime}=\tau \circ \pi_{o} \circ \gamma(U), V^{\prime}=\tau \circ \pi_{e} \circ \gamma(V)$;
2 for $i=0$ to 4

$$
\begin{aligned}
& E_{e}[i]=U^{\prime}[i] \oplus\left(\oplus_{j=0}^{3} V^{\prime}[j]\right) \\
& E_{e}[i+4]=V^{\prime}[i] \oplus\left(\oplus_{j=0}^{3} U^{\prime}[j]\right)
\end{aligned} .
$$

Generating Round Keys With the usage of 8 expand keys $E_{e}(k), 13$ round constants $C_{e}[i]$ and 4 masking constants $M C_{j}$, generate 13 round keys:

1 Compute the first two round keys $K_{e}[0, \ldots, 7]$. For $i=0,1,2,3$, compute

$$
K_{e}[i]=E_{e}[i] \oplus C_{e}[0] \oplus M C_{i}, \quad K_{e}[i+4]=E_{e}[i+4] \oplus C_{e}[1] \oplus M C_{i} ;
$$

2 Comput the remaining 11 round keys.
For the even round,

$$
\begin{gathered}
\left\{E_{e}[3], E_{e}[2], E_{e}[1], E_{e}[0]\right\} \leftarrow\left\{E_{e}[0]^{\ll 6}, E_{e}[3]^{\ll 6}, E_{e}[2]^{\ll 16}, E_{e}[1]^{\ll 24}\right\}, \\
K_{e}[4 r+i] \leftarrow E_{e}[i] \oplus C_{e}[r] \oplus M C_{i},(i=0,1,2,3) ;
\end{gathered}
$$

For the odd round,

$$
\begin{gathered}
\left\{E_{e}[7], E_{e}[6], E_{e}[5], E_{e}[4]\right\} \leftarrow\left\{E_{e}[6]^{\ll 16}, E_{e}[5]^{\ll 8}, E_{e}[4]^{\ll \delta_{b}^{2}}, E_{e}[7]^{<\delta_{b}^{2}}\right\}, \\
K_{e}[4 r+i] \leftarrow E_{e}[4+i] \oplus C_{e}[r] \oplus M C_{i},(i=0,1,2,3) .
\end{gathered}
$$

2.3 Description of mCrypton

mCrypton is a reduced vesion of Crypton with a block size of 64-bit and three key sizes of 64-bit, 96-bit and 128-bit called mCrypton-64, mCrypton-96 and mCrypton-128 respectively. All of them have 12 rounds. The round function is similar with that of Crypton which
contains four transformations: nonlinear substitution γ, bit permutation π, nibble transformation τ, key addition σ.

Nonlinear substitution γ contains four 4-bit S-boxes $S_{i}(0 \leq i \leq 3)$ that satisfy $S_{2}=S_{0}^{-1}$, $S_{3}=S_{1}^{-1}$.
Bit permutation π applies 4 column permutations $\pi_{i}(0 \leq i \leq 3)$ to mix the state with four masking nibbles $m_{0}=0 \mathrm{xe}, m_{1}=0 \mathrm{xd}, m_{2}=0 \mathrm{xb}, m_{3}=0 \times 7$.

Nibble transformation τ and key addition σ are similar with those in Cypton.
The full encryption of mCrypton adds a pre-whitening key at the beginning and adds an output transformation $\phi=\tau \circ \pi \circ \tau$. The key schedules for mCrypton-64/96/128 are different, more details can refer [9].

3. Properties of Crypton and mCrypton

Here are some properties of Crypton and mCrypton used in the rest of paper.
Proposition 1 The transformation $\pi \circ \tau$ combined with the transformation $\phi=\tau \circ \pi \circ \tau$ is equivalent a byte permutation as shows and it satisfies $\pi_{e} \circ \pi_{o}=\pi_{o} \circ \pi_{e}$.

$$
\left(\begin{array}{cccc}
3 & 2 & 1 & 0 \\
7 & 6 & 5 & 4 \\
11 & 10 & 9 & 8 \\
15 & 14 & 13 & 12
\end{array}\right) \xrightarrow{\tau \circ \pi_{e} \circ \pi_{o}}\left(\begin{array}{cccc}
4 & 0 & 12 & 8 \\
5 & 1 & 13 & 9 \\
6 & 2 & 14 & 10 \\
7 & 3 & 15 & 11
\end{array}\right)
$$

Proof Taking the odd-round Crypton as an example, considering the truncated difference, we omit the key addition σ and then combine the transformation $\pi \circ \tau$ with $\phi=\tau \circ \pi \circ \tau$ to obtain $\tau \circ \pi_{e} \circ \pi_{o}$. Let a be the input difference that satisfies $\tau \circ \pi_{e} \circ \pi_{o}(a)=c$. If we set $c^{\prime}=\tau(c)$ and $b=\pi_{o}(a)$, there must be $\pi_{e} \circ \pi_{o}(a)=c^{\prime}$.

$$
\begin{array}{lll}
b_{3}=m_{3} a_{3} \oplus m_{0} a_{7} \oplus m_{1} a_{11} \oplus m_{2} a_{15} & c_{3}{ }^{\prime}=m_{1} b_{3} \oplus m_{2} b_{7} \oplus m_{3} b_{11} \oplus m_{0} b_{15} \\
b_{7}=m_{0} a_{3} \oplus m_{1} a_{7} \oplus m_{2} a_{11} \oplus m_{3} a_{15} & c_{7}{ }^{\prime}=m_{2} b_{3} \oplus m_{3} b_{7} \oplus m_{0} b_{11} \oplus m_{1} b_{15} \\
b_{11}=m_{1} a_{3} \oplus m_{2} a_{7} \oplus m_{3} a_{11} \oplus m_{0} a_{15} & c_{11}{ }^{\prime}=m_{3} b_{3} \oplus m_{0} b_{7} \oplus m_{1} b_{11} \oplus m_{2} b_{15} \\
b_{15}=m_{2} a_{3} \oplus m_{3} a_{7} \oplus m_{0} a_{11} \oplus m_{1} a_{15} & c_{15}{ }^{\prime}=m_{0} b_{3} \oplus m_{1} b_{7} \oplus m_{2} b_{11} \oplus m_{3} b_{15}
\end{array}
$$

So we can get $c_{3}{ }^{\prime}=a_{11}, c_{7}{ }^{\prime}=a_{15}, c_{11}{ }^{\prime}=a_{3}, c_{15}{ }^{\prime}=a_{7}$ directly. Similarly, each column is a permutation.

Proposition 2 For mCrypotn, the combination of $\pi \circ \tau$ and $\phi=\tau \circ \pi \circ \tau$ is equivalent to a nibble permutation as follows:

$$
\left(\begin{array}{cccc}
3 & 2 & 1 & 0 \\
7 & 6 & 5 & 4 \\
11 & 10 & 9 & 8 \\
15 & 14 & 13 & 12
\end{array}\right) \xrightarrow{\text { г॰т०т}}\left(\begin{array}{cccc}
12 & 8 & 4 & 0 \\
13 & 9 & 5 & 1 \\
14 & 10 & 6 & 2 \\
15 & 11 & 7 & 3
\end{array}\right) .
$$

Proposition 3 When the input difference of π in Crypton is active only on two bytes and the output difference is active on two bytes, there are only four possible groups in which x presents nonzero difference:
I. For $x=0 \mathrm{x} 1,0 \mathrm{x} 2,0 \mathrm{x} 3$,

$$
\begin{aligned}
& (x, x, 0,0) \rightarrow(x, 0,0, x), \\
& (x, x, x, 0) \rightarrow(0,0, x, x) \\
& (x, 0, x) \rightarrow(x, 0, x, 0), \\
& (x, 0,0, x) \rightarrow(x, x, 0,0), \\
& (0,0, x, x) \rightarrow(0, x, x, 0)
\end{aligned}
$$

II. For $x=0 \mathrm{x} 4,0 \mathrm{x} 8,0 \mathrm{xc}$,

$$
\begin{array}{ll}
(x, x, 0,0) \rightarrow(x, x, 0,0), & (0, x, x, 0) \rightarrow(x, 0,0, x), \\
(x, 0, x, 0) \rightarrow(0, x, 0, x), & (0, x, 0, x) \rightarrow(x, 0, x, 0) \\
(x, 0,0, x) \rightarrow(0, x, x, 0), & (0,0, x, x) \rightarrow(0,0, x, x)
\end{array}
$$

III. For $\quad x_{1}=0 \times 10,0 \times 20,0 \times 30$,

$$
\begin{aligned}
& x_{2}=0 \times 10,0 \times 11,0 \times 12,0 \times 13,0 \times 20,0 \times 21,0 \times 22,0 \times 23,0 \times 30,0 \times 31,0 \times 32,0 \times 33, \\
&\left(x_{1}, x_{1}, 0,0\right) \rightarrow\left(0, x_{1}, x_{1}, 0\right), \\
&\left(0, x_{1}, x_{1}, 0\right) \rightarrow\left(x_{1}, x_{1}, 0,0\right), \\
&\left(0,0, x_{1}, x_{1}\right) \rightarrow\left(x_{1}, 0,0, x_{1}\right), \\
&\left(0, x_{2}, 0, x_{2}\right) \rightarrow\left(0, x_{2}, 0, x_{2}\right) \\
&\left(x_{1}, 0,0, x_{1}\right) \rightarrow\left(0,0, x_{1}, x_{1}\right),\left(x_{2}, 0, x_{2}, 0\right) \rightarrow\left(x_{2}, 0, x_{2}, 0\right)
\end{aligned}
$$

IV. For $x_{1}=0 \times 40,0 \mathrm{x} 80,0 \mathrm{xc} 0$,

$$
x_{2}=0 \times 40,0 \times 44,0 \times 48,0 \times 4 \mathrm{c}, 0 \mathrm{x} 80,0 \mathrm{x} 84,0 \mathrm{x} 88,0 \mathrm{x} 8 \mathrm{c}, 0 \mathrm{xc} 0,0 \mathrm{xc} 4,0 \mathrm{xc} 8,0 \mathrm{xcc},
$$

$$
\begin{array}{ll}
\left(x_{1}, x_{1}, 0,0\right) \rightarrow\left(0,0, x_{1}, x_{1}\right), & \left(0, x_{1}, x_{1}, 0\right) \rightarrow\left(0, x_{1}, x_{1}, 0\right), \\
\left(0,0, x_{1}, x_{1}\right) \rightarrow\left(x_{1}, x_{1}, 0,0\right), & \left(0, x_{2}, 0, x_{2}\right) \rightarrow\left(x_{2}, 0, x_{2}, 0\right), . \\
\left(x_{1}, 0,0, x_{1}\right) \rightarrow\left(x_{1}, 0,0, x_{1}\right), & \left(x_{2}, 0, x_{2}, 0\right) \rightarrow\left(0, x_{2}, 0, x_{2}\right) .
\end{array}
$$

Proposition 4 When the input difference of π in mCrypotn is active only on two nibbles and the output difference is active on two nibbles, there are totally 28 differential characteristics:
I. For $\quad x_{1}=0 \times 1, \quad x_{2}=0 \times 1,0 \times 5$,

$$
\begin{array}{ll}
\left(x_{1}, x_{1}, 0,0\right) \rightarrow\left(x_{1}, 0,0, x_{1}\right), & \left(0, x_{1}, x_{1}, 0\right) \rightarrow\left(0,0, x_{1}, x_{1}\right), \\
\left(x_{2}, 0, x_{2}, 0\right) \rightarrow\left(x_{2}, 0, x_{1}, 0\right), & \left(0, x_{2}, 0, x_{2}\right) \rightarrow\left(0, x_{1}, 0, x_{2}\right), \\
\left(x_{1}, 0,0, x_{1}\right) \rightarrow\left(x_{1}, x_{1}, 0,0\right), & \left(0,0, x_{1}, x_{1}\right) \rightarrow\left(0, x_{1}, x_{1}, 0\right)
\end{array}
$$

II. For $\quad x_{1}=0 \times 2, \quad x_{2}=0 \times 2,0 x a$,

$$
\begin{array}{ll}
\left(x_{1}, x_{1}, 0,0\right) \rightarrow\left(x_{1}, x_{1}, 0,0\right), & \left(0, x_{1}, x_{1}, 0\right) \rightarrow\left(x_{1}, 0,0, x_{1}\right), \\
\left(x_{2}, 0, x_{2}, 0\right) \rightarrow\left(0, x_{2}, 0, x_{2}\right), & \left(0, x_{2}, 0, x_{2}\right) \rightarrow\left(x_{2}, 0, x_{2}, 0\right), \\
\left(x_{1}, 0,0, x_{1}\right) \rightarrow\left(0, x_{1}, x_{1}, 0\right), & \left(0,0, x_{1}, x_{1}\right) \rightarrow\left(0,0, x_{1}, x_{1}\right) ;
\end{array}
$$

III. For $x=0 \times 4$,

$$
\begin{array}{ll}
(x, x, 0,0) \rightarrow(0, x, x, 0), & (0, x, x, 0) \rightarrow(x, x, 0,0), \\
(x, 0, x, 0) \rightarrow(x, 0, x, 0), & (0, x, 0, x) \rightarrow(0, x, 0, x), \\
(x, 0,0, x) \rightarrow(0,0, x, x), & (0,0, x, x) \rightarrow(x, 0,0, x) ;
\end{array}
$$

IV. For $x=0 x 8$,

$$
\begin{array}{ll}
(x, x, 0,0) \rightarrow(0,0, x, x), & (0, x, x, 0) \rightarrow(0, x, x, 0), \\
(x, 0, x, 0) \rightarrow(0, x, 0, x), & (0, x, 0, x) \rightarrow(x, 0, x, 0), \\
(x, 0,0, x) \rightarrow(x, 0,0, x), & (0,0, x, x) \rightarrow(x, x, 0,0) .
\end{array}
$$

Proposition 5 When the input difference of π in Crypton is active on three bytes and the output difference is active on one byte, there are four possible groups in which x presents nonzero difference:
I. For $x=0 \mathrm{x} 1,0 \mathrm{x} 2,0 \mathrm{x} 3$,

$$
(x, x, x, 0) \rightarrow(0, x, 0,0)
$$

II. For $x=0 \mathrm{x} 4,0 \mathrm{x} 8,0 \mathrm{xc}$,

$$
(x, x, x, 0) \rightarrow(0,0, x, 0)
$$

III. For $x=0 \times 10,0 \times 20,0 \times 30$,

$$
(x, x, x, 0) \rightarrow(0,0,0, x) ;
$$

IV. For $x=0 \times 40,0 \times 80,0 \mathrm{xc} 0$,

$$
(x, x, x, 0) \rightarrow(x, 0,0,0) .
$$

Proposition 6 When the input difference of π in mCrypotn is active only on three nibbles and the output difference is active on one nibble, there is only 1 differential characteristic:

$$
(0 \times 8,0 \times 8,0 \times 8,0) \rightarrow(0 \times 8,0,0,0)
$$

Proposition 7 [19] Let $a[0,1,2,3$] be the input of π in Crypton and $b[0,1,2,3$] be the output. If $a[3] \| b[2,3]$ are fixed, the remaining five bytes can take 256 values.

Proposition 8 [14] Given one pair of input difference and output difference of S-box, there is one pair of input and output can be determined on average.

4. Meet-in-the-Middle Attacks on Crypton-192/256

We use two generalized δ-sets to construct two new 6-round meet-in-the-middle distinguishers to give the first attack on 9-round Crypton-192 and improve the attack on 10round Crypton-256.

4.1 A New Meet-in-the-Middle Attack on 9-Round Crypton-192/256

Definition 1 [19] For a set of 256 Crypton states $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{255}\right\}$, if these elements satisfy $y_{2}^{i}[j]=y_{2}^{0}[j], j \in\{0,1,2,4,5,6,8,9,10,12,13,14,15\} \quad$ and $\quad z_{2}^{i}[j]=z_{2}^{0}[j], j \in\{0,1,2,4,5,6,8, \ldots, 15\}$ for $0 \leq i \leq 255$, we call this set a generalized δ-set of Crypton.

Combined with the properties of π, the first 6-round meet-in-the-middle distinguisher suitable for Cypton-192 is given by Theorem 1.

Theorem 1 For the generalized δ-set of Crypton $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{255}\right\}$, select the first 32 values $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{31}\right\}$ to encrypt 6 rounds. If the pair $\left\{y_{2}^{0}, y_{2}^{j}\right\}(0 \leq j \leq 255)$ satisfies the truncated differential characteristic shown in Fig. 2, the corresponding 496-bit ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ could take 2^{172} possible values.

The gray bytes depict nonzero difference and the white bytes are inactive in Fig. 2.
Proof First, the 496-bit ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ could be determined by the following 36 bytes:

$$
x_{3}^{0}[12,13]\left\|x_{4}^{0}[0,1,2,3,4,5,6,7]\right\| x_{5}^{0}\left\|k_{e 5}[0,2,4,6,8,10,12,14]\right\| k_{e 6}[0,8] .
$$

Known the value of Δy_{2}^{i}, deduce Δz_{2}^{i} and Δx_{3}^{i} because π and σ are linear. Knowing $x_{3}^{0}[12,13]$ can deduce $\Delta y_{3}^{i}[12,13]$ and $\Delta x_{4}^{i}[0,1,2,3,4,5,6,7]$. Then deduce Δx_{5}^{i} with the knowledge of $x_{4}^{0}[0,1,2,3,4,5,6,7]$. Knowing x_{5}^{0} can decuce y_{5}^{i} and encrypt it to get $y_{7}^{i}[0,8]$ and $\Delta y_{7}^{i}[0,8]$ with $k_{e 5}[0,2,4,6,8,10,12,14] \| k_{e 6}[0,8]$. Then because of $\Delta y_{7}^{i}[0,8]=\Delta x_{8}^{i}[0,2] \quad$, we can get the sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$.
Next, the 36 bytes can be represented by the following 23 bytes:

$$
\Delta z_{2}^{j}[3,7]\left\|x_{3}^{0}[12,13]\right\| x_{4}^{0}[0,1,2,3,4,5,6,7]\left\|y_{6}^{0}[0,2,4,6,8,10,12,14]\right\| y_{7}^{0}[0,8] \| \Delta y_{7}^{0}[0]
$$

On the one hand, known $\Delta z_{2}^{j}[3,7]\left\|x_{3}^{0}[12,13]\right\| x_{4}^{0}[0,1,2,3,4,5,6,7]$, we can deduce Δx_{5}^{i}. On the other hand, knowing $y_{7}^{0}[0,8] \| \Delta y_{7}^{0}[0,8]$ can deduce $\Delta y_{6}^{i}[0,2,4,6,8,10,12,14]$. Then we obtain Δy_{5}^{i}. According to Proposition 8, we can get one pair $x_{5}^{i} \| y_{5}^{i}$ on average to deduce the corresponding keys $k_{e 5}[0,2,4,6,8,10,12,14] \| k_{e 6}[0,8]$.

As $\Delta z_{2}^{j}[3,7]$ can only take 256 possible values and $\Delta y_{7}^{0}[0]$ can take 15 values in total, the 496-bit sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ can take 2^{172} possible values.

Fig. 2. 6-round meet-in-the-middle distinguisher
When the values of $\Delta y_{2}^{i}[3,7,11]$ are $0, \Delta z_{2}^{j}[3,7]$ are equal to 0 with a probability of 2^{-16}. Set the differences $\Delta z_{5}^{i}[0,1,2,3,8,9,10,11]$ to nonzero and other bytes to zero with a probability of 2^{-64}. When there are only $\{0,2\}$-th byte to be nonzero in Δz_{6}^{j}, the probability is 2^{-48}. There are only 15 possible values of $\Delta y_{7}^{i}[0,8]$ with a probability of 2^{-12}. So the probability of this distinguisher is 2^{-140}.

With the usage of this distinguisher, we can extend one more round forward and two more rounds backward to give the 9-round attack on Crypton-192 as Fig. 3 shows. The gray bytes depict nonzero difference and the white bytes are inactive. The slashed bytes are the subkey bytes needed to be guessed. The whole attack can be divided into two phases: Precomputation Phase and Key Recovery Phase.

Precomputation Phase: With the usage of time and memory tradeoff technique, three tables T_{0}, T_{1}, T_{2} are estibalished to reduce the time complexity of key recovery phase.

Table T_{0} : Store 2^{172} possible 496-bit sequences $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ with a time complexity of $2^{176} \times 2^{5} \times 6 / 9 \approx 2^{180.4}$ 9-round Crypton encryptions and a memory complexity of $2^{176} \times 496 / 128 \approx 2^{178.0}$ Crypton states.

Table T_{1} : Store the encryption from $y_{8}[0]$ to $z_{9, \text { row }(0)}$ '. Decrypt $z_{9, \text { row }(0)}$ ' to get $y_{8}[0]$ with a 40 -bit key $k_{e 9, \text { row }(0)} \| k_{e 8}[0]$. Take $k_{e 9, \text { row }(0)}\left\|k_{e 8}[0]\right\| z_{9, \text { row }(0)}$ ' as index to store $y_{8}[0]$ with a time complexity of $2^{32} \times 2^{40} \times 2 / 9 \approx 2^{69.8}$ 9-round Crypton encryptions and a memory complexity of $2^{72} / 16=2^{68}$ Crypton states.

Table T_{2} : Store the encryption from $y_{8}[2]$ to $z_{9, \text { row(2) }}$ ' which is simialr with the table T_{1}.
Key Recovery Phase: We need to find a plaintext pair suitable for Fig. 3 and construct the ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ to match the table T_{0}.

1. Choose 2^{21} structures: a set of 2^{96} plaintexts are all possible 128 -bit values with $\{0,1,2,4,5,6,8,9,10,12,13,14\}$-th running over all values and others fixed constants. We need 2^{212} pairs to get 1 pair that satisfies the truncated differential characteirstic shown in Fig. 3.
2. Filter those pairs that the ciphertext difference on $\{1,3,5,7,9,11,13,15\}$-th bytes are 0 and others are active. $2^{212} \times 2^{-64}=2^{148}$ plaintext pairs remain.
3. Do these following substeps for each of 2^{148} pairs:
3.1 Guess $\Delta y_{8}[0,2]$ to deduce $\Delta x_{9}[0,1,2,3,8,9,10,11]$. Known the ciphertext difference, deduce $\Delta y_{9}[0,1,2,3,8,9,10,11]$. Deduce $x_{9}[0,1,2,3,8,9,10,11] \| y_{9}[0,1,2,3,8,9,10,11]$ and $k_{e 9}^{*}[0,1,2,3,8,9,10,11]$ according to Property 8.
3.2 For each deduced key $k_{e 9}^{*}[0,1,2,3,8,9,10,11]$, deduce $\Delta y_{8}[0,2]$. Guess 15 possible values of $\Delta x_{8}[0,2]$. Then deduce $x_{8}[0,2] \| y_{8}[0,2]$ and $k_{e 8}^{*}[0,2]$.
3.3 Guess $\Delta x_{2}[3,7,11]$ to deduce $\Delta y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$. Known the plaintext difference, deduce $\Delta x_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$. Then according to Property 8, deduce $x_{1}[0,1,2,4,5,6,8,9,10,12,13,14] \| y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ and the corresponding key $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]$.
3.4 For each deduced key $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]$, deduce $\Delta x_{2}[3,7,11]$. Guess 256 possible values of $\Delta y_{2}[3,7,11]$. Deduce $x_{2}[3,7,11] \| y_{2}[3,7,11]$ and $k_{e 1}[3,7,11]$.
3.5 For those keys in 3.3 and 3.4, choose a plaintext P^{0} and encrypt it to get $y_{2}^{0}[3,7,11]$ and $w_{1}^{0}[0,1,2,4,5,6,8,9,10]$. Known $\Delta y_{2}[3,7,11]$, get $y_{2}^{i}[3,7,11]$ and decrypt them to get $w_{1}^{0}[3,7,11]$. Because $w_{1}^{i}[0,1,2,4,5,6,8,9,10]$ is equal to $w_{1}^{0}[0,1,2,4,5,6,8,9,10]$, we can deduce $P^{i}[0,1,2,4,5,6,8,9,10,12,13,14]$. With the knowledge of $P^{i}[3,7,11,15]=P^{0}[3,7,11,15]$, obtain the plaintext P^{i} and its corresponding ciphertext.
3.6 With the knowledge of $k_{e 8}^{*}[0,2] \| k_{e 9}^{*}[0,1,2,3,8,9,10,11]$, look up the table T_{1} and T_{2} to obtain the sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$. If the sequence lies in the table T_{0}, select the key as a candidate. If not, discard the key. A wrong key pass the test with a probability of $2^{176} \times 2^{-496}=2^{-320}$.

4 There remains $1+2^{144} \times 2^{16} \times 15 \times 2^{24} \times 2^{8} \times 2^{-320} \approx 1 \quad$ key $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]\left\|k_{e 1}[3,7,11]\right\| k_{e 8}^{*}[0,2] \| k_{e 9}^{*}[0,1,2,3,8,9,10,11]$. Exhaust the rest bytes to recover the master key.

The details of this attack are shown in Fig. 3. Theorem 2 anlyzes the complexity of this attack.

Theorem 2 With the usage of a 6-round distinguisher, the meet-in-the-middle attack on 9round Crypton is proposed with a time of complexity of $2^{190.3}$, a memory complexity of 2^{178} and a data complexity of 2^{117}.

Proof In the precomputation phase, the construction of the table T_{0} needs a time complexity of $2^{180.4}$ 9-round Crypton encryptions and a memory of $2^{178.0}$ Crypton states.

In the key recovery phase, Step 3.6 contributes the main time complexity. In Step 3.6, we need to look up the table T_{0} that we translate the unit of time complexity into 9-round Crypton encrypton [10]. Its time complexity is $2^{148} \times 2^{16} \times 15 \times 2^{24} \times 2^{8} \times 2^{5} \times 2^{-14} \times 6 / 9 \approx 2^{190.3}$ 9-round Crypton encryptions.

Fig. 3. Meet-in-the-middle attack on 9-round Crypton

4.2 Improved Meet-in-the-Middle Attack on 10-Round Crypton-256

Definition 2 For a set of 256 Crypton states $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{255}\right\}$, if the elements in this set satisfy $\quad y_{2}^{i}[j]=y_{2}^{0}[j], \quad j \in\{0,1,2,4,5,6,8, \ldots, 15\} \quad$ and $z_{2}^{i}[j]=z_{2}^{0}[j], j \in\{0,1,2,4,5,6,8,9,10,12,13,14,15\} \quad$ for $0 \leq i \leq 255$, we call this set a generalized δ-set of Crypton.

We can construct another 6 -round distinguisher with this generalized δ-set. Theorem 3
shows the details of the new 6-round distinguisher in the dashed box of Fig. 4. The gray bytes depict non-zero difference and the white bytes are inactive.

Theorem 3 For the generalized δ-set of Crypton $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{255}\right\}$, select the first 32 values $\left\{y_{2}^{0}, y_{2}^{1}, \ldots, y_{2}^{31}\right\}$ to encrypt 6 rounds. If the pair $\left\{y_{2}^{0}, y_{2}^{j}\right\}(0 \leq j \leq 255)$ satisfies the truncated differential characeristic shown in the dashed box of Fig. 4, the corresponding 496bit ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ could take 2^{212} possible values.

Then attack 10-round Crypton-256 by extending one more round forward and three more rounds backward. This attack contains two phases: Precomputation Phase and Key Recovery Phase.

Precomputation Phase: Establish 5 tables $T_{0}, T_{1}, T_{2}, T_{3}, T_{4}$.
Table T_{0} : Store 2^{212} possible 496-bit sequences $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ with a time complexity of $2^{212} \times 32 \times 2.5 / 10=2^{215} \quad 10$-round Crypton encryptions and a memory complexity of $2^{212} \times 496 / 128=2^{214.0}$ Crypton states.

Table T_{1} : Exhaust $\Delta z_{9}{ }^{\prime}[2,10]$. Take $\Delta C_{\text {col }(0)}$ as index to store $y_{10, \text { row(2) }}$.
Table T_{2} : Exhaust $\Delta z_{9}{ }^{\prime}[3,11]$. Take $\Delta C_{\text {col }(1)}$ as index to store $y_{10, \text { row (3) }}$.
Table T_{3} : Exhaust $\Delta z_{9}{ }^{\prime}[0,8]$. Take $\Delta C_{\text {col }(2)}$ as index to store $y_{10, \text { row }(0)}$.
Table T_{4} : Exhaust $\Delta z_{9}{ }^{\prime}[1,9]$. Take $\Delta C_{\text {col(3) }}$ as index to store $y_{10, \text { row(1) }}$.
Key Recovery Phase: 1. Choose 2^{53} structures: a set of 2^{64} plaintexts are all possible 128 -bit values with $\{0,1,4,5,8,9,12,13\}$-th running over all values and others fixed constants. We need 2^{180} pairs to get 1 pair that satisfies the truncated differential characteirstic shown in Fig. 4.
2. Do these following substeps for each of the 2^{180} pairs:
2.1 Guess $\Delta y_{9}[0,1,2,3,8,9,10,11]$ to deduce Δx_{10}. Known the ciphertext difference, deduce Δy_{10}. Look up the table $T_{1}, T_{2}, T_{3}, T_{4}$ to deduce $x_{10} \| y_{10}$ and $k_{e 10}^{*}$.
2.2 With the usage of key schedule, deduce $k_{e 0}$ from $k_{e 10}^{*}$. Encrypt the 2^{180} plaintext pairs for one round with the 2^{64} keys in 2.1 to filter those keys lead $\Delta z_{1}[0,1,4,5,8,9]$ nonzero with a probability of 2^{-48}.
2.3 For the remaining deduced keys in 2.2, compute $\Delta y_{9}[0,1,2,3,8,9,10,11]$.Guess $\Delta y_{8}[0,2]$ to deduce $\Delta x_{9}[0,1,2,3,8,9,10,11]$. Then deduce $x_{9}[0,1,2,3,8,9,10,11] \| y_{9}[0,1,2,3,8,9,10,11]$ and $k_{e 9}^{*}[0,1,2,3,8,9,10,11]$ according to Property 8.
2.4 For the remaining keys $k_{e 10}^{*}$, deduce $k_{e 8}^{*}[0,2]$ according to key schedule .
2.5 Known $k_{e 0}$, we can compute $\Delta x_{2}[3,7]$. Guess 256 possible values of $\Delta y_{2}[3,7]$ to deduce $x_{2}[3,7] \| y_{2}[3,7]$ and $k_{e 1}[3,7]$.
2.6 Choose a plaintext P^{0} and encrypt it to get $w_{1}^{0}[0,1,2,4,5,6]$ and $y_{2}^{0}[3,7]$. Known $\Delta y_{2}[3,7]$, we can get $y_{2}^{i}[3,7,11]$ and decrypt them to get $w_{1}^{0}[3,7]$. Because $w_{1}^{i}[0,1,2,4,5,6]$ is equal to $w_{1}^{0}[0,1,2,4,5,6]$, we can deduce $P^{i}[0,1,4,5,8,9,12,13]$. With the knowledge of $P^{i}[j]=P^{0}[j], \quad j \in\{2,3,6,7,10,11,14,15\}$, obtain the plaintext P^{i} and its corresponding ciphertext.
2.7 With the knowledge of $k_{e 8}^{*}[0,2]\left\|k_{e 9}^{*}[0,1,2,3,8,9,10,11]\right\| k_{e 10}^{*}$, look up table T_{1} and T_{2} to obtain the sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$. If the sequence lies in the table T_{0}, select the key as a candidate. If not, discard the key. A wrong key pass the test with a probability of $2^{212} \times 2^{-496}=2^{-284}$.

4 There remains $1+2^{180} \times 2^{64} \times 2^{16} \times 2^{-48} \times 2^{8} \times 2^{-284} \approx 1$ key $k_{e 1}[3,7]\| \| k_{e 9}^{*}[0,1,2,3,8,9,10,11]$ $\| k_{e 10}^{*}$. Exhaust the rest bytes to recover the master key.

Theorem 4 With the usage of a 6-round distinguisher, the meet-in-the-middle attack on 10-round Crypton-256 is proposed with a time of complexity of $2^{240.7}$, a memory complexity of $2^{214.0}$ and a data complexity of 2^{117}.

Proof In the precomputation phase, the comstruction of the table T_{0} needs a time complexity of $2^{215} 10$-round Crypton encryptions and a memory of 2^{214} Crypton states.

In the key recovery phase, Step 2.2 encrypts 2^{180} pairs for one round with 2^{64} keys. The time complexity for each plaintext is equivalent to 0.5 round Crypton encryption. The total time complexity is $2^{180} \times 2^{64} \times 2 \times 0.5 / 10 \approx 2^{240.7}$ 10-round Crypton encryptions.

Fig. 4. Meet-in-the-middle attack on 10-round Crypton

5. Meet-in-the-Middle on mCrypton-96/128

We utilize Property 6 to construct a new generalized δ-set and give the attacks on 8 -round and 9 -round mCrypton with a 5-round and 6-round distinguisher respectively.

Definition 2 For a set of 512 mCrypton states $\left\{x_{2}^{0}, x_{2}^{1}, \ldots, x_{2}^{511}\right\}$, if these satisfy $x_{2}^{i}[j]=x_{2}^{0}[j], j \in\{0,1,2,4,5,6,8,9,10,12, \ldots, 15\} \quad$ and $y_{2}^{i}[j] \oplus y_{2}^{0}[j]=0 x 8, j \in\{3,7,11\}$, we call this set a generalized δ-set of mCrypton.

5.1 Improved Meet-in-the-Middle Attack on 8-Round mCrypton-96/128

Theorem 5 proposes a 5-round meet-in-the-middle distinguisher of mCrypton. The details are shown in Fig. 5. The gray nibbles depict non-zero difference and the white nibbles are inactive.

Theorem 5 For the generalized δ-set of mCrypton $\left\{x_{2}^{0}, x_{2}^{1}, \ldots, x_{2}^{511}\right\}$, select the first 64 values to encrypt 5 rounds. If the pair $\left\{x_{2}^{0}, x_{2}^{j}\right\}(0 \leq j \leq 63)$ satisfies the truncated differential path in Fig. 5, the 252 -bit ordered sequence $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$ could take 2^{53} possible values.

Proof First, the 252-bit ordered sequence $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$ could be determined by the following 29 nibbles:

$$
x_{2}^{0}[3,7,11]\left\|x_{3}^{0}[12]\right\| x_{4}^{0}[0,1,2,3]\left\|x_{5}^{0}\right\| k_{e 5}[0,4,8,12] \| k_{e 6}[3] .
$$

Known Δx_{2}^{i}, deduce Δy_{2}^{i} and Δx_{3}^{i} because π and σ are linear. Knowing $x_{3}^{0}[12]$ can deduce $\Delta y_{3}^{i}[12]$ and $\Delta x_{4}^{i}[0,1,2,3]$. Then deduce Δx_{5}^{i} with knowledge of $x_{4}^{0}[0,1,2,3]$. Knowing x_{5}^{0} can decuce y_{5}^{i} and encrypt it with $k_{e 5}[0,4,8,12] \| k_{e 6}[3]$ to get $y_{7}^{i}[3]$. Then we can get $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$.

Next, the 29 bytes can be represented by the following 23 bytes:

$$
\Delta x_{2}^{j}[3,7,11]\left\|\Delta y_{2}^{j}[3,7,11]\right\| x_{3}^{0}[12]\left\|x_{4}^{0}[0,1,2,3]\right\| y_{6}^{0}[0,4,8,12]\left\|y_{7}^{0}[3]\right\| \Delta y_{7}^{0}[3] .
$$

As $\Delta x_{2}^{j}[3,7,11]$ can only take 512 possible values and $\Delta y_{2}^{j}[3,7,11]$ can take 1 value in total, the 252 -bit sequence $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$ can take 2^{53} possible values.

In our meet-in-the-middle attack on 8-round mCrypton, we store all the possibles distinguishers in a hash table in precomputation phase and match them in key recovery phase.

Precomputation Phase: Establish the table T to store 2^{53} possible values of 252-bit sequences $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$.

Key Recovery Phase: 1. Choose 2^{13} structures: a set of 2^{48} plaintexts are all possible 64-bit values with $\{0,1,2,4,5,6,8,9,10,12,13,14\}$-th running over all values and others fixed constants. We need 2^{108} pairs to get 1 pair that satisfies the truncated differential characteirstic shown in Fig. 5.
2. Filter those pairs that the ciphertext difference on $\{0,1,2,4,5,6,8,9,10,12,13,14\}$-th bytes are 0 and others are active.There remains 2^{60} plaintext pairs.
3. Do these following substeps for each of 2^{60} pairs:
3.1 Guess $\Delta y_{7}[0]$ to deduce $\Delta x_{8}[12,13,14,15]$. Known the ciphertext difference, deduce $\Delta y_{8}[12,13,14,15]$. Deduce $x_{8}[12,13,14,15] \| y_{8}[12,13,14,15]$ and $k_{e 8}^{*}[12,13,14,15]$ according
to Property 8.
3.2 Guess 2^{9} possible values of $\Delta x_{2}[3,7,11]$. Deduce $\Delta y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ and $\Delta x_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ with the knowledge of plaintext difference. Then obtain $x_{1}[0,1,2,4,5,6,8,9,10,12,13,14] \| y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ and $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]$.
3.3 Choose a plaintext P^{0} and encrypt to get $y_{1}^{0}[0,1,2,4,5,6,8,9,10,12,13,14]$. Known $\Delta y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$, get $y_{1}^{i}[0,1,2,4,5,6,8,9,10,12,13,14]$ and decrypt them to get $P^{i}[0,1,2,4,5,6,8,9,10,12,13,14]$. With the knowledge of $P^{i}[3,7,11,15]=P^{0}[3,7,11,15]$, obtain the plaintext P^{i} and its corresponding ciphertext.
3.4 With the knowledge of $k_{e 8}^{*}[12,13,14,15]$, decrypt the ciphertexts to obtain the sequence $\left(y_{7}^{0}[3] \oplus y_{7}^{1}[3], y_{7}^{0}[3] \oplus y_{7}^{2}[3], \ldots, y_{7}^{0}[3] \oplus y_{7}^{63}[3]\right)$. If the sequence match in the table T, select the key as a candidate. If not, discard the key. A wrong key pass the test with a probability of $2^{53} \times 2^{-252}=2^{-199}$.

4 There are $1+2^{60} \times 2^{9} \times 2^{4} \times 2^{-199} \approx 1$ key
$k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14] \| k_{e 8}^{*}[12,13,14,15]$ remaining.

Fig. 5. Meet-in-the-middle attack on 8-round mCrypton
Theorem 6 With the usage of a 5-round distinguisher, the meet-in-the-middle attack on 8round mCrypton is proposed with a time of complexity of 2^{76}, a memory complexity of 2^{55} and a data complexity of 2^{51}.

Proof In the precomputation phase, the construction of the table T needs a time complexity of $2^{53} \times 2^{6} \times 2 / 8=2^{57} \quad 8$-round mCrypton encryptions and a memory of $2^{53} \times 4=2^{55}$ Crypton states.

In the key recovery phase, Step 3.4 owns the main time complexity. We need to look up the table T with a time complexity of $2^{60} \times 2^{4} \times 2^{9} \times 2^{6} / 8=2^{76} \quad 8$-round mCrypton encryptions.

5.2 A New Meet-in-the-Middle Attack on 9-Round mCrypton-96/128

Similarly with Theorem 5, a new meet-in-the-middle attack on 9-round mCrypton-96/128 is proposed in this subsection. The details are shown in Fig. 6. The gray nibbles depict nonzero difference and the white nibbles are inactive. The slashed bytes are the recovered subkey nibbles.
Theorem 7 For the generalized δ-set of mCrypton $\left\{x_{2}^{0}, x_{2}^{1}, \ldots, x_{2}^{511}\right\}$, select the first 32 values to encrypt 6 rounds. If the pair $\left\{x_{2}^{0}, x_{2}^{j}\right\}(0 \leq j \leq 31)$ satisfies the truncated differential path in Fig. 6, the 248-bit ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ could take 3×2^{77} possible values.

Proof First, the 248-bit ordered sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2]\right.$ $\left.\oplus x_{8}^{0}[0,2]\right)$ could be determined by the following 36 nibbles:

$$
x_{2}^{0}[3,7,11]\left\|x_{3}^{0}[12]\right\| x_{4}^{0}[0,1,2,3]\left\|x_{5}^{0}\right\| k_{e 5}[0,2,4,6,8,10,12,14]\left\|k_{e 6}[0,8]\right\| k_{e 7}[0,2] .
$$

Known Δx_{2}^{i}, deduce Δy_{2}^{i} with the usage of Property 7 and Δx_{3}^{i} because π and σ are linear. Knowing $x_{3}^{0}[12]$ can deduce $\Delta y_{3}^{i}[12]$ and $\Delta x_{4}^{i}[0,1,2,3]$. Then deduce Δx_{5}^{i} with knowledge of $x_{4}^{0}[0,1,2,3]$. Knowing x_{5}^{0} can decuce y_{5}^{i} and encrypt it with $k_{e 5}[0,2,4,6,8,10,12,14]\left\|k_{e 6}[0,8]\right\| \quad k_{e 7}[0,2]$ to get $x_{8}^{i}[0,2]$. Then get $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$.

Next, the 36 bytes can be represented by the following 23 bytes:

$$
\begin{array}{r}
\Delta x_{2}^{j}[3,7,11]\left\|\Delta y_{2}^{j}[3,7,11]\right\| x_{3}^{0}[12]\left\|x_{4}^{0}[0,1,2,3]\right\| y_{6}^{0}[0,2,4,6,8,10,12,14] \| \\
y_{7}^{0}[0,8]\left\|y_{8}^{0}[0,2]\right\| \Delta y_{8}^{0}[0]
\end{array}
$$

As $\Delta x_{2}^{j}[3,7,11]$ can only take 512 possible values, $\Delta y_{2}^{j}[3,7,11]$ can take 1 value in total and $\Delta y_{8}^{0}[0]$ can take 3 value with the usage of Property 5 , the 248 -bit sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus \quad x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$ can take 3×2^{77} possible values.

This attack contains two phases: precomputation phase and key recovery phase.
Precomputation Phase: Precompute and store 3×2^{77} values of 248-bit sequences $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right) \quad$ in the table T.

Key Recovery Phase: 1 . Choose 2^{14} structures: a set of 2^{48} plaintexts are all possible 64-bit values with $\{0,1,2,4,5,6,8,9,10,12,13,14\}$-th running over all values and others fixed constants. We need 2^{109} pairs to get 1 pair that satisfies the truncated differential characteirstic shown in Fig. 6.
2. Filter those pairs that the ciphertext difference on $\{1,3,5,7,9,11,13,15\}$-th bytes are 0 and others are active. 2^{77} plaintext pairs remain.
3. Do these following substeps for each of 2^{77} pairs:
3.1 Guess $\Delta y_{8}[0,2]$ to deduce $\Delta x_{9}[0,1,2,3,8,9,10,11]$. Known the ciphertext difference,
deduce $\Delta y_{9}[0,1,2,3,8,9,10,11]$. Deduce $x_{9}[0,1,2,3,8,9,10,11] \| y_{9}[0,1,2,3,8,9,10,11]$ and $k_{e 9}^{*}[0,1,2,3,8,9,10,11]$ according to Property 8.
3.2 Guess 2^{9} possible values of $\Delta x_{2}[3,7,11]$. Deduce $\Delta y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ and $\Delta x_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ with the knowledge of plaintext difference. Then obtain $x_{1}[0,1,2,4,5,6,8,9,10,12,13,14] \| y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$ and $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]$.
3.3 Choose a plaintext P^{0} and encrypt it to get $y_{1}^{0}[0,1,2,4,5,6,8,9,10,12,13,14]$. Known $\Delta y_{1}[0,1,2,4,5,6,8,9,10,12,13,14]$, get $y_{1}^{i}[0,1,2,4,5,6,8,9,10,12,13,14]$ and decrypt them to get $P^{i}[0,1,2,4,5,6,8,9,10,12,13,14]$. With the knowledge of $P^{i}[3,7,11,15]=P^{0}[3,7,11,15]$, obtain the plaintext P^{i} and its corresponding ciphertext.
3.4 With the knowledge of $k_{e 9}^{*}[0,1,2,3,8,9,10,11]$, decrypt the ciphertexts to obtain the sequence $\left(x_{8}^{1}[0,2] \oplus x_{8}^{0}[0,2], x_{8}^{2}[0,2] \oplus x_{8}^{0}[0,2], \ldots, x_{8}^{31}[0,2] \oplus x_{8}^{0}[0,2]\right)$. If the sequence lies in the table T, select the key as a candidate. If not, discard the key. A wrong key pass the test with a probability of $3 \times 2^{77} \times 2^{-248}=2^{-169}$.

4 There remains $1+2^{77} \times 2^{9} \times 2^{8} \times 2^{-169} \approx 1$ key $k_{e 0}[0,1,2,4,5,6,8,9,10,12,13,14]$ $\| k_{e 9}^{*}[0,1,2,3,8,9,10,11]$.

Fig. 6. Meet-in-the-middle attack on 9-round mCrypton

Theorem 8 With the usage of a 6-round distinguisher, the meet-in-the-middle attack on 9round mCrypton is proposed with a time of complexity of $2^{95.8}$, a memory complexity of $2^{80.6}$ and a data complexity of 2^{62}.
Proof In the precomputation phase, the construction of the table T needs a time complexity of $3 \times 2^{77} \times 2^{5} \times 2 / 9 \approx 2^{8.4}$ 9-round mCrypton encryptions and a memory of $3 \times 2^{77} \times 4=2^{80.6}$ Crypton states.
In the key recovery phase, Step 3.4 contributes the main time complexity. We need to look up table T with no more than $2^{77} \times 2^{8} \times 2^{9} \times 2^{5} / 9 \approx 2^{95.8} 9$-round mCrypton encryptions.

6. Conclusion

The security of Crypton and mCrypton under meet-in-the-middle attack is analyzed in this paper. We concentrate on the differential properties of π and construct various generalized δ-sets by introducing several new differential characteristics. With the usage of a new generalized δ-sets, the first 6 -round meet-in-the-middle distinguisher suitable for Crypton192 is found and the first meet-in-the-middle attack on 9-round Crypton-192 is proposed. We also improve the attack on 10 -round Crypton-256. By using the differential properties of π and γ, we give a new generalized δ-set to construct 5 -round and 6 -round distinguishers to attack 8 -round and 9 -round mCrypton respectively. At the same condition, the attacks in this paper could attack these two reduced-round ciphers with less resource. Each cipher should be well evaluated before it come into widespread use. The comparison of main meet-in-the-middle attacks on Crypton and mCrypton is shown in Table 1.

Table 1. Comparison of Main Meet-in-the-Middle Attacks on Crypton and mCrypton*

Type	Round	Data	Time	Memory	Refer.
Crypton-192	8	2^{113}	2^{155}	2^{138}	$[15]$
	9	2^{117}	$2^{190.3}$	2^{178}	Sect. 3.1
	9	2^{113}	$2^{245.05}$	$2^{241.17}$	$[14]$
	9	2^{117}	$2^{190.3}$	2^{178}	Sect. 3.1
	10	2^{113}	$2^{245.05}$	$2^{241.59}$	$[14]$
	10	2^{113}	2^{246}	$2^{209.59}$	$[14]$
	10	2^{117}	$2^{240.7}$	2^{214}	Sect. 3.2
	11	-	-	-	$[16] * *$
mCrypton-96	8	2^{53}	2^{91}	2^{82}	$[15]$
	8	2^{51}	2^{76}	2^{55}	Sect. 4.1
	9	2^{57}	2^{83}	2^{83}	$[16] * *$
	9	2^{62}	$2^{95.8}$	$2^{80.6}$	Sect. 4.2
	9	2^{53}	2^{112}	2^{106}	$[15]$
	9	2^{62}	$2^{95.8}$	$2^{80.6}$	Sect. 4.2
	10	2^{55}	2^{117}	2^{103}	$[16]$

*Precomputation included
**Without complete attack

References

[1] Chae Hoon Lim, "A revised version of Crypton - Crypton V1.0," in Proc. of 6th Fast Software Encryption Workshop, pp. 31-45, March 24-26, 1999. Article (CrossRef Link).
[2] Eli Biham, "A note on comparing the AES candidates," Second AES Candidate Conference, 1999. Article (CrossRef Link).
[3] Joan Daemen, Lars R.Knudsen and Vincent Rijmen, "The block cipher Square," in Proc. of 4th Fast Software Encryption Workshop, pp. 149-165, January 20-22, 1997. Article (CrossRef Link).
[4] Chae Hoon Lim, "Crypton: A new 128-bit block cipher," NIST AES Proposal, 1998. Article (CrossRef Link).
[5] Maryam Pouryazdan, Burak Kantarci, Tolga Soyata, et al., "Anchor-Assisted and Vote-Based Trustworthiness Assurance in Smart City Crowdsensing," IEEE Access, vol. 4, pp. 529-541, 2016. Article (CrossRef Link).
[6] Wenjia Li and Houbing Song, "ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc Networks," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 960-969, 2016. Article (CrossRef Link).
[7] Saeed Javanmardi, Mohammad Shojafar, Shahdad Shariatmadari, et al., "FR trust: a fuzzy reputation-based model for trust management in semantic P2P grids," International Journal of Grid and Utility Computing, vol. 6, no. 1, pp. 57-66, 2015. Article (CrossRef Link).
[8] Samaher AI-Janabi, Ibrahim AI-Shourbaji, Mohammad Shojafar, et al., "Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications," Egyptian Informatics Journal, 2016. Article (CrossRef Link).
[9] Chae Hoon Lim and Tymur Korkishko, "mCrypton - A lightweight block cipher for security of low-cost RFID tags and sensors," in Proc. of 6th Information Security Applications Workshop, pp. 243-258, August 22-24, 2006. Article (CrossRef Link).
[10] Hamid Mala, Mohsen Shakiba and Mohammad Dakhilalian, "New impossible differential attacks on reduced-round Crypton," Computer Standards \& Interfaces, vol. 32, no. 4, pp. 222-227, January, 2010. Article (CrossRef Link).
[11] Yuechuan Wei, Chao Li and Bing Sun, "Related-key impossible differential cryptanalysis on Crypton and Crypton v1.0," in Proc of the World Congress on Internet Security, pp. 227-232, February 21-23, 2011. Article (CrossRef Link).
[12] Jinkeon Kang, Kitae Jeong, Jaechul Sung, et al., "Collision Attacks on AES-192/256, Crypton192/256, mCrypton-96/128, and Anubis," Journal of Applied Mathematics, vol. 2013, pp. 1-10, 2013. Article (CrossRef Link).
[13] Junghwan Song, Kwanhyung Lee and Hwanjin Lee, "Biclique Cryptanalysis on the Full Crypton256 and mCrypton-128," Journal of Applied Mathematics, vol. 2014, pp. 1-10, 2013. Article (CrossRef Link).
[14] Yonglin Hao, Dongxia Bai and Leibo Li, "A Meet-in-the-Middle Attack on Round-Reduced mCrypton Using the Differential Enumeration Techniques," in Proc of the International Conference on Network and System Security, pp. 166-183, October 15-17, 2014. Article (CrossRef Link).
[15] Mohsen Shakiba, Mohammad Dakhilalian and Hamid Mala, "Cryptanalysis of mCrypton-64," Internation Journal of Communication Systems, vol. 28, no. 8, pp. 1401-1418, 2015. Article (CrossRef Link).
[16] Mohsen Shakiba, Mohammad Dakhilalian and Hamid Mala, "Non-isomorphic biclique cryptanalysis of full-round Crypton," Computer Standards \& Interfaces, vol.41, pp. 72-78, 2015. Article (CrossRef Link).
[17] Kitae Jeong, HyungChul Kang, Changhoon Lee, et al., "Weakness of lightweight block ciphers mCrypton and LED against biclique cryptanalysis," Peer-to-Peer Networking and Applications, vol. 8, no. 4, pp. 716-732, 2015. Article (CrossRef Link).
[18] Yonglin Hao. "Improved Meet-in-the-Middle Attack on Round-Reduced Crypton-256," IACR Cryptology ePrint Archive, 2016. Article (CrossRef Link).
[19] Rongjia Li and Chenhui Jin. "Improved meet-in-the-middle attacks on Crypton and mCrypton," IET Information Security, vol. 11, no. 2, pp. 97-103, 2017. Article (CrossRef Link).
[20] Patrick Derbez and Pierre-Alain Fouque, "Automatic search of meet-in-the-middle and impossible differential attacks," in Proc of the CRYPTO 2016, pp. 157-184, August 14-18, 2016. Article (CrossRef Link).
[21] Whitfield Diffie and Martin E. Hellman, "Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard," IEEE Computer, vol. 10, no. 6, pp. 74-84, 1977.
Article (CrossRef Link).
[22] Hüseyin Demirci and Ali Aydin Selçuk, "A Meet-in-the-Middle Attack on 8-Round AES," in Proc. of 15th Fast Software Encryption Workshop, pp. 116-126, February 10-13, 2008. Article (CrossRef Link).
[23] Orr Dunkelman, Nathan Keller and Adi Shamir, "Improved Single-Key Attacks on 8-Round AES-192 and AES-256," Journal of Cryptology, vol. 28, no. 3, pp. 397-422, 2015. Article (CrossRef Link).
[24] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean, "Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting," in Proc. of Eurocrypt 2013, pp. 371-387, May 26-30, 2013. Article (CrossRef Link).
[25] Leibo Li, Keting Jia and Xiaoyun Wang, "Improved Single-Key Attacks on 9-Round AES192/256," in Proc. of 21st Fast Software Encryption Workshop, pp. 127-146, March 3-5, 2014. Article (CrossRef Link).
[26] Rongjia Li and Chenhui Jin, "Meet-in-the-middle attacks on 10-round AES-256," Des. Codes Cryptology, vol. 80, no. 3, pp. 459-471, 2016. Article (CrossRef Link).

Jingyi Cui is a M.S. candidate of Zhengzhou Information Science and Technology. His main research interests include the design and cryptanalysis of symmetric cipher.

Jiansheng Guo is a professor of Zhengzhou Information Science and Technology. His main research interests include the theory of information security and quantum cryptology.

Yanyan Huang received M.S. degree in Zhengzhou Information Science and Technology. Her main research insterest includes information theory.

Yipeng Liu is a M.S. cnadidate of Zhengzhou Information Science and Technology. His main research interests include information theory and quantum cryptology.

[^0]: This research was supported by Chinese Postdoctoral Science Foundation (2014M562582). We give our thanks to Prof. Houbing Song for checking our manuscript.

