References
- Donoho, D. L., "Compressed sensing," IEEE Trans. Inform. Theory, 52, (4), pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
- Gribonval, R., Nielsen, M., "Sparse representations in unions of bases," IEEE Trans. Inform. Theory, 49, (12), pp. 3320-3325, 2003. https://doi.org/10.1109/TIT.2003.820031
- Candes, E. J., Romberg, J., "Sparsity and incoherence in compressive sampling," Inverse Problems, 23, (3), pp. 969-985, 2007. https://doi.org/10.1088/0266-5611/23/3/008
- Candes, E. J., Tao T., "Decoding by linear programming," IEEE Trans. Inform. Theory, 51, (12), pp. 4203-4215, 2005. https://doi.org/10.1109/TIT.2005.858979
- Donoho, D. L., Huo, X., "Uncertainty principles and ideal atomic decompositions," IEEE Trans. Inform. Theory, 47, (7), pp. 2845-2862, 2001. https://doi.org/10.1109/18.959265
- Donoho, D. L., Tsaig, Y., "Extensions of compressed sensing," Signal Processing, 86, (3), pp. 533-548, 2006. https://doi.org/10.1016/j.sigpro.2005.05.028
- Candes, E. J., Tao, T., Romberg, J., "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, 52, (2), pp. 489-509, 2006. https://doi.org/10.1109/TIT.2005.862083
- Amini, A., Montazerhodjat, V., Marvasti, F., "Matrices With Small Coherence Using p-Ary Block Codes," Signal Processing, IEEE Transactions on, 60, (1), pp. 172-181, 2012. https://doi.org/10.1109/TSP.2011.2169249
- Mohades, M.M., Mohades, A., Tadaion, A., "A Reed-Solomon Code Based Measurement Matrix with Small Coherence," Signal Processing Letters, IEEE, 21, (7), pp. 839-843, 2014. https://doi.org/10.1109/LSP.2014.2314281
- Lu, W., Kpalma, K., & Ronsin, J., "Sparse Binary Matrices of LDPC Codes for Compressed Sensing," in Proc. of IEEE Data Compression Conference, (58), pp. 405-405, 2012.
- Gui, G., Mehbodniya, A., Wan, Q., & Adachi, F., "Sparse signal recovery with omp algorithm using sensing measurement matrix," Ieice Electron Express, 8, (5), pp. 285-290, 2011. https://doi.org/10.1587/elex.8.285
- Haupt, J., Bajwa, W.U., Raz, G., Nowak, R., "Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation," Information Theory, IEEE Transactions on, 56, (11), pp. 5862-5875, 2010. https://doi.org/10.1109/TIT.2010.2070191
- Zhang, C., Yang, H. R., Wei, S., "Compressive sensing based on deterministic sparse Toeplitz measurement matrices with random pitch," Acta Automatica Sinica, 38, (8), pp. 1362-1369, 2012. https://doi.org/10.3724/SP.J.1004.2012.01362
- Sun, J. M., Wang, S., Dong, Y., "Sparse block circulant matrices for compressed sensing," Communications, IET, 7, (13), pp. 1412-1418, 2013. https://doi.org/10.1049/iet-com.2013.0030
- Fan, F. H., "Toeplitz-structured measurement matrix construction for chaotic compressive sensing," in Proc. of Intelligent Control and Information Processing (ICICIP), 2014 Fifth International Conference on, pp. 19-22, Aug 2014.
- Qiao H., Pal, P., "Generalized nested sampling for compression and exact recovery of symmetric Toeplitz matrices," in Proc. of Signal and Information Processing (GlobalSIP), 2014 IEEE Global Conference on, pp. 443-447, Dec. 2014.
- Qiao H., Pal, P., "Generalized Nested Sampling for Compressing Low Rank Toeplitz Matrices," Signal Processing Letters, IEEE, 22, (11), pp. 1844-1848, 2015. https://doi.org/10.1109/LSP.2015.2438066
- Rauhut, H., "Compressive sensing and structured random matrices," Theoretical foundations and numerical methods for sparse recovery, Walter de Gruyter, Berlin, 1st edn, 2010.
- Shishkin, S.L., "Fast and Robust Compressive Sensing Method Using Mixed Hadamard Sensing Matrix," in Proc. of Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 2, (3), pp. 353-361, 2012. https://doi.org/10.1109/JETCAS.2012.2214616
- Duarte, M.F., Eldar, Y.C., "Structured Compressed Sensing: From Theory to Applications," Signal Processing, IEEE Transactions on, 59, (9), pp. 4053-4085, 2011. https://doi.org/10.1109/TSP.2011.2161982
- Duarte, M.F., Baraniuk, R.G., "Kronecker Compressive Sensing," Image Processing, IEEE Transactions on, 21, (2), pp. 494-504, 2012. https://doi.org/10.1109/TIP.2011.2165289
- Friedland, S., Li Q., Schonfeld, D., "Compressive Sensing of Sparse Tensors," Image Processing, IEEE Transactions on, 23, (10), pp. 4438-4447, 2014. https://doi.org/10.1109/TIP.2014.2348796
- Do, T. T., Gan, L., Nguyen, N. H., et al., "Fast and efficient compressive sensing using structurally random matrices," IEEE Trans. Signal Processing, 60, (1), pp. 139-154, 2012. https://doi.org/10.1109/TSP.2011.2170977
- Tropp, J. A., and Gilbert, A. C., "Signal recovery from random measurements via Orthogonal Matching Pursuit," Information Theory, IEEE Transactions on, 53, (12), pp.4655-4666, 2007. https://doi.org/10.1109/TIT.2007.909108
- Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J., "Gradient projection for sparse reconstruction: Alppication to compressed sensing and other inverse problems," IEEE J. Sel. Topics Signal Process., 4, (1), pp. 586-597, 2007.
- M. A. Asif, and J. Romberg, "Sparse Recovery of Streaming Signals Using L1-Homotopy," IEEE Trans. Signal Processing, 62, (16), pp. 4209-4223, 2014. https://doi.org/10.1109/TSP.2014.2328981